BackgroundDespite age-related adipose involution, T cell generation in the thymus (thymopoiesis) is maintained beyond puberty in adults. In rodents, growth hormone (GH), insulin-like growth factor-1 (IGF-1), and GH secretagogues reverse age-related changes in thymus cytoarchitecture and increase thymopoiesis. GH administration also enhances thymic mass and function in HIV-infected patients. Until now, thymic function has not been investigated in adult GH deficiency (AGHD). The objective of this clinical study was to evaluate thymic function in AGHD, as well as the repercussion upon thymopoiesis of GH treatment for restoration of GH/IGF-1 physiological levels.Methodology/Principal FindingsTwenty-two patients with documented AGHD were enrolled in this study. The following parameters were measured: plasma IGF-1 concentrations, signal-joint T-cell receptor excision circle (sjTREC) frequency, and sj/β TREC ratio. Analyses were performed at three time points: firstly on GH treatment at maintenance dose, secondly one month after GH withdrawal, and thirdly one month after GH resumption. After 1-month interruption of GH treatment, both plasma IGF-1 concentrations and sjTREC frequency were decreased (p<0.001). Decreases in IGF-1 and sjTREC levels were correlated (r = 0.61, p<0.01). There was also a decrease in intrathymic T cell proliferation as indicated by the reduced sj/β TREC ratio (p<0.01). One month after reintroduction of GH treatment, IGF-1 concentration and sjTREC frequency regained a level equivalent to the one before GH withdrawal. The sj/β TREC ratio also increased with GH resumption, but did not return to the level measured before GH withdrawal.ConclusionsIn patients with AGHD under GH treatment, GH withdrawal decreases thymic T cell output, as well as intrathymic T cell proliferation. These parameters of thymus function are completely or partially restored one month after GH resumption. These data indicate that the functional integrity of the somatotrope GH/IGF-1 axis is important for the maintenance of a normal thymus function in human adults.Trial RegistrationClinicalTrials.gov NTC00601419
Age-related changes of gene expression contribute to the physiological alteration observed with human ageing. Herein, the abundance of a selection of 148 transcripts involved in immunosenescence and stress response was compared in total RNA of PBMC of healthy young to middle-age probands (35.0 +/- 6.5 year old) and healthy old probands (82.5 +/- 6.8 year old). This study provides a list of 16 differentially abundant transcripts species in the healthy old probands. Thus, these changes of abundance can be considered as easily accessible biomarkers of ageing. Some of these differential abundances like CD28, CD69, LCK (decreased abundance in old subjects), CD86, Cathepsin D, H and S (increased abundance in old subjects) might explain biochemical and cytochemical changes observed at the protein level in the immune system and thus might correspond to regulatory processes affecting the ageing process. Indeed these changes reflect the low-grade pro-inflammatory status observed in old persons and suggest a hypo-responsiveness of T-cells together with an increase in antigen presentation potential. In addition, among the differentially abundant transcripts were transcripts involved in the oxidative stress response HMOX1 and HSPA6 mRNAs were found as more abundant in PBMC from elderly subjects.
Aims: We address the question of the expression and the role of the growth hormone/insulin-like growth factor (GH/IGF) axis in the thymus. Methods: Using RT-qPCR, the expression profile of various components of the somatotrope GH/IGF axis was measured in different thymic cell types and during thymus embryogenesis in Balb/c mice. The effect of GH on T cell differentiation was explored via thymic organotypic culture. Results: Transcription of Gh, Igf1, Igf2 and their related receptors predominantly occurred in thymic epithelial cells (TEC), while a low level of Gh and Igf1r transcription was also evidenced in thymic T cells (thymocytes). Gh, Ghr, Ins2, Igf1, Igf2, and Igfr1 displayed distinct expression profiles depending on the developmental stage. The protein concentrations of IGF-1 and IGF-2 were in accordance with the profile of their gene expression. In fetal thymus organ cultures (FTOC) derived from Balb/c mice, treatment with exogenous GH resulted in a significant increase of double negative CD4–CD8– T cells and CD4+ T cells, together with a decrease in double positive CD4+CD8+ T cells. These changes were inhibited by concomitant treatment with GH and the GH receptor (GHR) antagonist pegvisomant. However, GH treatment also induced a significant decrease in FTOC Gh, Ghr and Igf1 expression. Conclusion: These data show that the thymotropic properties of the somatotrope GH/IGF-1 axis involve an interaction between exogenous GH and GHR expressed by TEC. Since thymic IGF-1 is not increased by GH treatment, the effects of GH upon T cell differentiation could implicate a different local growth factor or cytokine.
BackgroundInfectious diseases are significant causes of morbidity and mortality among elderly populations. However, the relationship between oxidative stress, immune function and inflammatory response in acute phase of the infectious disease is poorly understood.ResultsHerein the abundance of a selection of 148 transcripts involved in immunosenescence and stress response was compared in total RNA of PBMC of 28 healthy aged probands and 39 aged patients in acute phase of infectious disease (day 2-4 after hospitalization) or in convalescence phase (day 7-10). This study provides a list of 24 differentially abundant transcript species in the acute phase versus healthy aged. For instance, transcripts associated with inflammatory and anti-inflammatory reactions (TNFRSF1A, IL1R1, IL1R2, IL10RB) and with oxidative stress (HMOX1, GPX1, SOD2, PRDX6) were more abundant while those associated with T-cell functions (CD28, CD69, LCK) were less abundant in acute phase. The abundance of seven of these transcripts (CD28, CD69, LCK, CTSD, HMOX1, TNFRSF1A and PRDX6) was already known to be altered in healthy aged probands compared to healthy young ones and was further affected in aged patients in acute phase, compromising an efficient response.ConclusionThis work provides insights of the state of acute phase response to infections in elderly patients and could explain further the lack of appropriate response in the elderly compared to younger persons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.