The emergence of complex diseases is promoting a change from one-target to multitarget drugs and peptides are ideal molecules to fulfill this polypharmacologic role. Here we review current status in the design of polypharmacological peptides aimed to treat complex diseases, focusing on tuberculosis. In this sense, combining multiple activities in single molecules is a two-sided sword, as both positive and negative side effects might arise. These polypharmacologic compounds may be directed to regulate autophagy, a catabolic process that enables cells to eliminate intracellular microbes (xenophagy), such as Mycobacterium tuberculosis (MBT). Here we review some strategies to control MBT infection and propose that a peptide combining both antimicrobial and proautophagic activities would have a greater potential to limit MBT infection. This endeavor may complement the knowledge gained in understanding the mechanism of action of antibiotics and may lead to the design of better polypharmacological peptides to treat complex diseases such as tuberculosis.
Mycobacterium tuberculosis (MTB) is the principal cause of human tuberculosis (TB), which is a serious health problem worldwide. The development of innovative therapeutic modalities to treat TB is mainly due to the emergence of multi drug resistant (MDR) TB. Autophagy is a cell-host defense process. Previous studies have reported that autophagy-activating agents eliminate intracellular MDR MTB. Thus, combining a direct antibiotic activity against circulating bacteria with autophagy activation to eliminate bacteria residing inside cells could treat MDR TB. We show that the synthetic peptide, IP-1 (KFLNRFWHWLQLKPGQPMY), induced autophagy in HEK293T cells and macrophages at a low dose (10 μM), while increasing the dose (50 μM) induced cell death; IP-1 induced the secretion of TNFα in macrophages and killed Mtb at a dose where macrophages are not killed by IP-1. Moreover, IP-1 showed significant therapeutic activity in a mice model of progressive pulmonary TB. In terms of the mechanism of action, IP-1 sequesters ATP in vitro and inside living cells. Thus, IP-1 is the first antimicrobial peptide that eliminates MDR MTB infection by combining four activities: reducing ATP levels, bactericidal activity, autophagy activation, and TNFα secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.