More than 2 y have passed since the BP-Deepwater Horizon oil spill in the Gulf of Mexico, yet we still have little understanding of its ecological impacts. Examining effects of this oil spill will generate much-needed insight into how shoreline habitats and the valuable ecological services they provide (e.g., shoreline protection) are affected by and recover from large-scale disturbance. Here we report on not only rapid salt-marsh recovery (high resilience) but also permanent marsh area loss after the BP-Deepwater Horizon oil spill. Field observations, experimental manipulations, and wave-propagation modeling reveal that (i) oil coverage was primarily concentrated on the seaward edge of marshes; (ii) there were thresholds of oil coverage that were associated with severity of salt-marsh damage, with heavy oiling leading to plant mortality; (iii) oil-driven plant death on the edges of these marshes more than doubled rates of shoreline erosion, further driving marsh platform loss that is likely to be permanent; and (iv) after 18 mo, marsh grasses have largely recovered into previously oiled, noneroded areas, and the elevated shoreline retreat rates observed at oiled sites have decreased to levels at reference marsh sites. This paper highlights that heavy oil coverage on the shorelines of Louisiana marshes, already experiencing elevated retreat because of intense human activities, induced a geomorphic feedback that amplified this erosion and thereby set limits to the recovery of otherwise resilient vegetation. It thus warns of the enhanced vulnerability of already degraded marshes to heavy oil coverage and provides a clear example of how multiple human-induced stressors can interact to hasten ecosystem decline.geomorphology | multiple stressor | wetland | human impacts
Although the major influence of black carbon (BC) on soil and sediment organic contaminant sorption is widely accepted, an understanding of the mechanisms and natural variation in pyrogenic carbon interaction with natural organic matter (NOM) is lacking. The sorption of a phenolic NOM monomer (catechol) and humic acids (HA) onto BC was examined using biochars made from oak, pine, and grass at 250, 400, and 650 degrees C. Catechol sorption equilibrium occurred after 14 d and was described by a diffusion kinetic model, while HA required only 1 d and followed pseudo-second-order kinetics. Catechol sorption capacity increased with increasing biochar combustion temperature, from pine < oak < grass and from coarse < fine particle size. At lower catechol concentrations, sorption affinity (Freundlich constant, K(f)) was directly related to micropore surface area (measured via CO(2) sorptometry) indicating the predominance of specific adsorption. In contrast, HA exhibited an order of magnitude less sorption (0.1% versus 1%, by weight) due to its exclusion from micropores. Greater sorption of both catechol and HA occurred on biochars with nanopores, i.e. biochars made at higher temperatures. These findings suggest that addition of BC to soil, via natural fires or biochar amendments, will sequester abundant native OM through sorption.
The Deepwater Horizon oil spill led to the severe contamination of coastal environments in the Gulf of Mexico. A previous study detailed coastal saltmarsh erosion and recovery in a number of oil-impacted and nonimpacted reference sites in Barataria Bay, Louisiana over the first 18 months after the spill. Concentrations of alkanes and polyaromatic hydrocarbons (PAHs) at oil-impacted sites significantly decreased over this time period. Here, a combination of DNA, lipid, and isotopic approaches confirm that microbial biodegradation was contributing to the observed petroleum mass loss. Natural abundance (14)C analysis of microbial phospholipid fatty acids (PLFA) reveals that petroleum-derived carbon was a primary carbon source for microbial communities at impacted sites several months following oil intrusion when the highest concentrations of oil were present. Also at this time, microbial community analysis suggests that community structure of all three domains has shifted with the intrusion of oil. These results suggest that Gulf of Mexico marsh sediments have considerable biodegradation potential and that natural attenuation is playing a role in impacted sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.