Nitric oxide (NO) was described to inhibit the proliferation of neural stem cells. Some evidence suggests that NO, under certain conditions, can also promote cell proliferation, although the mechanisms responsible for a potential proliferative effect of NO in neural stem cells have remained unaddressed. In this work, we investigated and characterized the proliferative effect of NO in cell cultures obtained from the mouse subventricular zone. We found that the NO donor NOC-18 (10 lM) increased cell proliferation, whereas higher concentrations (100 lM) inhibited cell proliferation. Increased cell proliferation was detected rapidly following exposure to NO and was prevented by blocking the mitogen-activated kinase (MAPK) pathway, independently of the epidermal growth factor (EGF) receptor. Downstream of the EGF receptor, NO activated p21Ras and the MAPK pathway, resulting in a decrease in the nuclear presence of the cyclin-dependent kinase inhibitor 1, p27 KIP1 , allowing for cell cycle progression. Furthermore, in a mouse model that shows increased proliferation of neural stem cells in the hippocampus following seizure injury, we observed that the absence of inducible nitric oxide synthase (iNOS 2/2 mice) prevented the increase in cell proliferation observed following seizures in wild-type mice, showing that NO from iNOS origin is important for increased cell proliferation following a brain insult. Overall, we show that NO is able to stimulate the proliferation of neural stem cells bypassing the EGF receptor and promoting cell division. Moreover, under pathophysiological conditions in vivo, NO from iNOS origin also promotes proliferation in the hippocampus. STEM CELLS
dSurfactants have long been known to have microbicidal action and have been extensively used as antiseptics and disinfectants for a variety of general hygiene and clinical purposes. Among surfactants, quaternary ammonium compounds (QAC) are known to be the most useful antiseptics and disinfectants. However, our previous toxicological studies showed that QAC are also the most toxic surfactants for mammalian cells. An understanding of the mechanisms that underlie QAC toxicity is a crucial first step in their rational use and in the design and development of more effective and safer molecules. We show that QAC-induced toxicity is mediated primarily through mitochondrial dysfunction in mammalian columnar epithelial cell cultures in vitro. Toxic effects begin at sublethal concentrations and are characterized by mitochondrial fragmentation accompanied by decreased cellular energy charge. At very low concentrations, several QAC act on mitochondrial bioenergetics through a common mechanism of action, primarily by inhibiting mitochondrial respiration initiated at complex I and, to a lesser extent, by slowing down coupled ADP phosphorylation. The result is a reduction of cellular energy charge which, when reduced below 50% of its original value, induces apoptosis. The lethal effects are shown to be primarily a result of this process. At higher doses (closer to the critical micellar concentration), QAC induce the complete breakdown of cellular energy charge and necrotic cell death.T he microbicidal activity of surfactants has generally been attributed to their ability to destroy cell membrane structure (1). This destructive action results from preferred partitioning of surfactants from the aqueous phase into cell membranes where, at low concentrations, they may affect some subtle physical properties (lipid bilayer curvature, lateral pressure, surface charge, etc.) which then affect membrane protein function, without a gross destruction of the membrane. At higher concentrations, closer to the surfactant critical micellar concentration (CMC), an equilibrium is established between the cell membrane components associated with the lipid bilayer phase and a coexisting micellar pseudophase in the aqueous medium that results in a dissolution of several components of the lipid bilayer into micelles, destruction of cell membrane integrity, and cell lysis (2, 3).Our interest in the potential use of surfactants as microbicides in sexually transmitted infections (STI) led us to compare surfactant toxicities to in vitro cultures of mammalian columnar epithelial cells with their ability to kill some bacterial and yeast STI pathogens (4). Interestingly, among all of the surfactant families (nonionic, zwitterionic, anionic, and cationic) examined, cationic surfactants were the only group in which cytotoxicity occurred at concentrations that were too low to provoke cell lysis. Bacterial growth in cultures was also shown to be inhibited at concentrations that were sublethal to epithelial cells. We then systematically evaluated the cytotoxici...
Diabetic retinopathy (DR) is the leading cause of blindness in adults. In diabetes, there is activation of microglial cells and a concomitant release of inflammatory mediators. However, it remains unclear how diabetes triggers an inflammatory response in the retina. Activation of P2 purinergic receptors by adenosine triphosphate (ATP) may contribute to the inflammatory response in the retina, insofar as it has been shown to be associated with microglial activation and cytokine release. In this work, we evaluated how high glucose, used as a model of hyperglycemia, considered the main factor in the development of DR, affects the extracellular levels of ATP in retinal cell cultures. We found that basal extracellular ATP levels were not affected by high glucose or mannitol, but the extracellular elevation of ATP, after a depolarizing stimulus, was significantly higher in retinal cells cultured in high glucose compared with control or mannitol-treated cells. The increase in the extracellular ATP was prevented by application of botulinum neurotoxin A or by removal of extracellular calcium. In addition, degradation of exogenously added ATP was significantly lower in high-glucose-treated cells. It was also observed that, in retinal cells cultured under high-glucose conditions, the changes in the intracellular calcium concentrations were greater than those in control or mannitol-treated cells. In conclusion, in this work we have shown that high glucose alters the purinergic signaling system in the retina, by increasing the exocytotic release of ATP and decreasing its extracellular degradation. The resulting high levels of extracellular ATP may lead to inflammation involved in the pathogenesis of DR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.