Leather processing for commercial purposes involves going through a set of complex and laborious operations, resulting in over 70% waste relative to the initial feedstock; a quarter of this waste is produced in Europe. Worldwide there are about 36,000 companies active in this sector, generating a turnover of almost 48 billion euros. As in any industrial sector, waste recovery is a highly researched topic, with alternatives for its use being constantly considered. One of the most interesting solutions to this problem consists of using part of the waste for power applications. For instance, the 10% fats from total animal waste could well be employed to power diesel engines, both in raw state or as biodiesel. The remainder, which contains mostly proteins, can be exploited to obtain biogas through anaerobic digestion. This paper presents the results of experimental determinations on the combustion of animal fats and compares it to other biofuels, such as vegetable oils and solid biomass. The advantages of co-firing hydrogen-rich gas (HRG) and vegetable biomass are also analyzed. According to the presented results, combustion of the investigated fuels has a lower impact on the environment, with the concentration of pollutants in the flue gases being low. Thus, the paper proves that all the proposed solutions are ecological alternatives for biomass exploitation for energy recovery purposes, based on comparing the results in terms of pollutant emissions. This paper provides qualitative and quantitative perspectives on multiple alternatives of energy recovery from biomass resources, while also briefly describing the methods and equipment used to this end.
The experimental research has highlighted the variety of possibilities of combustion of animal fat from bovine and swine mixed with liquid hydrocarbons. Previous research has established that the upper limit for an efficient combustion was 30 %. For a perfect mixing, the lower temperature limit was set to 40 °C. In the fuel laboratory, at the department TMETF was determined the viscosity of the mixtures for different proportions. The values obtained for various concentrations and preheating temperatures were close to the values for liquid hydrocarbons. The experimental researches have studied the combustion of the mixture using a mechanically spraying burner with constant pressure between 14 and 18 bar. The aspiration of the mixture is done from a specially designed tank; this tank is equipped with an electric heater, in order to maintain the mixture at a constant temperature between 40 °C to 50 °C. After that, the burner heats again the mixture with an integrated heating device up to 75 °C. The burner is also equipped with an air blower, pump and a calibrated nozzle. The combustion resulted from the experimental boiler with a power rated to 55 kW were monitored with a thermal vision camera and an exhaust gas analyser. This research has demonstrated the viability of using this type of mixtures in energetic burning equipment designed for liquid hydrocarbons.
The use of composite fuels using pitcoal and sawdust represents a high perspective. The paper deals with the experimental results focusing on the combustion efficiency of composite fuel briquettes and on the polluting emissions level. A special care is given to the determination of boiler efficiency and to the establishment of exploiting economic conditions, like the supply, cleaning etc. The research of the combustion of pitcoal-wood biomass briquettes is conducted on a 55 kW boiler. A numerical modeling of the combustion processes within the boiler allowed a critical comparison between the experimental and numerical data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.