Gold-associated pathfinder minerals have been investigated by identifying host minerals of Au for samples collected from an artisanal mining site near a potential gold mine (Kubi Gold Project) in Dunkwa-On-Offin in the central region of Ghana. We find that for each composition of Au powder (impure) and the residual black hematite/magnetite sand that remains after gold panning, there is a unique set of associated diverse indicator minerals. These indicator minerals are identified as SiO2 (quartz), Fe3O4 (magnetite) and Fe2O3 (hematite), while contributions from pyrite, arsenopyrites, iridosmine, scheelite, tetradymite, garnet, gypsum and other sulfate materials are insignificant. This constitutes a confirmative identification of Au pathfinding minerals in this particular mineralogical area. The findings suggest that X-ray diffraction could also be applied in other mineralogical sites to aid in identifying indicator minerals of Au and the location of ore bodies at reduced environmental and exploration costs.
X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) are applied to investigate the properties of fine-grained concentrates on artisanal, small-scale gold mining samples from the Kubi Gold Project of the Asante Gold Corporation near Dunwka-on-Offin in the Central Region of Ghana. Both techniques show that the Au-containing residual sediments are dominated by the host elements Fe, Ag, Al, N, O, Si, Hg, and Ti that either form alloys with gold or with inherent elements in the sediments. For comparison, a bulk nugget sample mainly consisting of Au forms an electrum, i.e., a solid solution with Ag. Untreated (impure) sediments, fine-grained Au concentrate, coarse-grained Au concentrate, and processed ore (Au bulk/nugget) samples were found to contain clusters of O, C, N, and Ag, with Au concentrations significantly lower than that of the related elements. This finding can be attributed to primary geochemical dispersion, which evolved from the crystallization of magma and hydrothermal liquids as well as the migration of metasomatic elements and the rapid rate of chemical weathering of lateralization in secondary processes. The results indicate that Si and Ag are strongly concomitant with Au because of their eutectic characteristics, while N, C, and O follow alongside because of their affinity to Si. These non-noble elements thus act as pathfinders for Au ores in the exploration area. This paper further discusses relationships between gold and sediments of auriferous lodes as key to determining indicator minerals of gold in mining sites.
Research on natural minerals and their chemical bonding to economically critical raw materials is a viable industrially relevant research area due to its increasing demand. Meeting demands requires fast, robust, and efficient techniques to explore new ore deposits and continuous operation of active mines as well as recycling. One of the most critical metals is gold which occurs in three main types of ore deposits: i) hydrothermal quartz veins and related deposits in metamorphic and igneous rocks; ii) volcanic-exhalative sulfide deposits, and iii) consolidated to unconsolidated placer deposits. Gold is commonly found as disseminated grains in quartz veins in pyrite and other sulfides or as rounded grains, flakes or nuggets in deposits in riverbanks, in contact with metamorphic or hypothermal deposits (e.g., skarns) or epithermal deposits such as volcanic fumaroles. Pathfinder elements and indicator minerals provide means to explore large areas for their potential mineral commodities such as gold, diamond, base metals, platinum group of elements, and rare earth elements by narrowing the search area to reduce exploration costs. The recent technological advancement in obtaining rapid geochemical results using field portable analytical devices as alternatives to the old approach where collected field samples are carried to the laboratory calls for further investigation to explore other techniques in mineral and metal exploration.In this Thesis, I investigate the properties of artisanal small-scale gold mining concentrate, outcrop, bulk Au, and drill hole samples from the Kubi Gold Project of the Asante Gold Corporation near Dunkwa-on-Offin in the Central Region of Ghana with a materials science perspective. X-ray diffraction (XRD) is used to identify SiO2 (quartz), Fe3O4 (magnetite), garnet, pyrite (FeS2), periclase (MgO), arsenopyrites, pyrrhotite, biotite, titanium oxide, and Fe2O3 (hematite) as the main indicator minerals in the mining site with less significant contributions from chalcopyrite, iridosmine, scheelite, tetradymite, gypsum, and a few other sulfates. X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) indicate that Fe,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.