Cisco (Coregonus artedi (sensu lato) Lesueur, 1818) forms matching in appearance to Blackfin Cisco from the Laurentian Great Lakes occur in four lakes in Algonquin Park, Ontario, Canada, a historical drainage of glacial Lake Algonquin (precursor of lakes Michigan and Huron). Their occurrence may represent colonization from glacial Lake Algonquin drainage patterns 13 000 calibrated years BP or independent evolution within each lake. Gill-raker numbers, temperature at capture depth during lake stratification, and hurdle models of habitat distribution are summarized. Blackfin (nigripinnis-like) in the four lakes had higher gill-raker numbers than artedi-like cisco captured in nearby lakes or within the same lake. Two lakes have a bimodal gill-raker distribution that indicate co-occurrence of two forms. Blackfin occupied the hypolimnion with a peak depth distribution at 20–25 m. Maximum depth for blackfin was 35–40 m. The presence of the opossum shrimp (Mysis diluviana Audzijonyte and Väinölä, 2005) appears necessary for the occurrence of cisco diversity in lakes but not sufficient in all cases. The presence of two forms of cisco in at least two lakes points to the possibility of the colonization hypothesis or the ecological speciation hypothesis as accounting for this phenomenon. Genetic analysis is needed to determine which of these hypotheses best accounts for the occurrence of blackfin in Algonquin Park.
The diversity of Laurentian Great Lakes ciscoes (Coregonus artedi, sensu lato) arose via repeated local adaptive divergence including deepwater ciscoes that are now extirpated or threatened. The nigripinnis form, or Blackfin Cisco, is extirpated from the Great Lakes and remains only in Lake Nipigon. Putative nigripinnis populations were recently discovered in sympatry with artedi in a historical drainage system of glacial Lake Algonquin, the precursor of lakes Michigan and Huron. Given the apparent convergence on Great Lakes form, we labeled this form blackfin. Here, we test the hypothesis that nigripinnis may have colonized this area from the Great Lakes as a distinct lineage. It would then represent a relict occurrence of the historical diversity of Great Lakes ciscoes. Alternatively, blackfin could have evolved in situ in several lakes. We captured more than 600 individuals in the benthic or pelagic habitat in 14 lakes in or near Algonquin Provincial Park (Ontario, Canada). Fish were compared based on habitat, morphology, and genetic variation at 6,676 SNPs. Contrary to our expectations, both cisco and blackfin belonged to an Atlantic lineage that colonized the area from the east, not from the Great Lakes. Sympatric cisco and blackfin were closely related while fish from different lakes were genetically differentiated, strongly suggesting the repeated in situ origin of each form. Across lakes, there was a continuum of ecological, morphological, and genetic differentiation that could be associated with alternative resources and lake characteristics. This study uncovers a new component of cisco diversity in inland lakes of Canada that evolved independently from ciscoes of the Laurentian Great lakes. The diversity of cisco revealed in this study and across their Canadian range presents a challenge for designating conservation units at the intraspecific level within the framework of the Committee on the Status of Endangered Wildlife in Canada (COSEWIC).
Post‐glacial colonization of lakes in Algonquin Park, Ontario, Canada resulted in food webs with cisco ( Coregonus artedi sensu lato) and either Mysis diluviana or Chaoborus spp. as the dominant diel migrator. Mysis as prey, its diel movements and benthic occupancy, are hypothesized to be key elements of ecological opportunity for cisco diversity in the Laurentian Great Lakes. If correct, the hypothesis strongly implies that lakes with Mysis would have greater trophic niche size and drive greater adaptive radiation of cisco forms relative to lakes without Mysis . The dichotomy in diel migrator in Algonquin Park lakes was an opportunity to assess the isotopic niche size of cisco (δ 15 N and δ 13 C) and determine if niche size expands with Mysis presence. We found the presence of Mysis is necessary to expand isotopic niche size in our study lakes. The use of habitats not typically associated with the ancestral form of cisco (e.g., benthic habitats) and phenotypic diversity (blackfin and cisco) also continue to expand niche size in Mysis ‐based food webs. Partial ecological speciation based on a large niche space appears to be present in one lake (Cauchon Lake) where use of alternative habitats is the only real difference in cisco. The presence of blackfin expands niche space in Cedar and Radiant Lakes. This was not matched in Hogan Lake where niche space was relatively smaller with similar forms. Possible reasons for this discrepancy may be related to the asymmetric basin of Hogan Lake and whether the two forms overlap during cool and cold‐water periods of the annual temperature cycle. By comparing trophic niche size among lakes with and without Mysis, we conclude that Mysis provides a key ecological opportunity for cisco diversity in our study lakes and likely more widely.
In the Tashan Cave barb Garra tashanensis, inhabiting a small cave in south west Iran, two mental disc forms were observed. To assess their phylogenetic relationships, disc-less and disc-bearing individuals were analyzed using mitochondrial cytochrome oxidase subunit I (COI) partial DNA sequences. Both mental disc forms nested within one clade with absolute bootstrap support (BS = 100), and the genetic distances between the disc-bearing and disc-less individuals (0.3-0.7%) was considerably lower than inter-species mtDNA sequence distances reported among members of the genus Garra. Hence, the observed mental disc variation was not inferred to be a taxonomic feature or a consequence of character displacement. Instead, it was inferred as a case of character release to diversify among ecological niches in the limited subterranean habitat, which should be clarified in follow-up ecological and population genetic studies in more detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.