B-cell chronic lymphocytic leukemia (B-CLL IntroductionThe tumor suppressor TP53 plays an important role in the control of key genes involved in the regulation of DNA repair, cell cycle, and apoptosis. 1,2 p53 is activated in response to DNA damage or other forms of stress, protecting cells from malignant transformation. This is the reason why p53 is frequently inactivated in human cancer. p53 is a short-lived protein, and its cellular level is controlled by the rate at which it is degraded. Although several U3 ubiquitin ligases have been implicated in p53 ubiquitylation and degradation, MDM2 appears to function as a master regulator of p53. 3,4 MDM2 not only facilitates p53 degradation, but it also binds p53 and inhibits its transcriptional activity. Therefore, inhibitors of p53-MDM2 binding are expected to stabilize and activate p53. Recently, the first potent and selective small-molecule antagonists of MDM2, the nutlins, have been shown to activate the p53 pathway in cancer cells with wild-type p53 in vitro and in vivo. 5 B-cell chronic lymphocytic leukemia (B-CLL) is characterized by the accumulation of long-lived CD5 ϩ B lymphocytes. 6 TP53 is mutated in only 5% to 10% of B-CLL cases at diagnosis, but in nearly 30% in chemotherapy-resistant tumors. TP53 mutation is associated with poor clinical outcome, shorter survival, and lack of response to therapy with purine nucleoside analogs or alkylating agents. [7][8][9][10][11] In fact, alterations in the TP53 gene are among the worst prognostic indicators for B-CLL. [12][13][14] Most of the chemotherapeutic drugs currently used induce cell cycle arrest or apoptosis through activation of p53, and p53 inactivation leads to chemoresistance. 1,2 Chemotherapeutic drugs, including purine analogs, topoisomerase inhibitors, and alkylating agents, have been shown to effectively increase p53 levels in B-CLL. 15,16 Thus, p53 activation is considered among the critical molecular events in chemotherapy-induced apoptosis in B-CLL cells. Although TP53 is mutated in only 5% to 10% of patients, the p53 pathway could be altered at a higher frequency, thus effectively attenuating p53 function. One of the mechanisms involved in p53 stabilization in response to DNA damage is its phosphorylation by ataxia telangiectasia mutated (ATM) protein. 1,2 Interestingly, ATM is inactivated in 10% to 20% of B-CLL cases, thus providing an alternative way to disable p53 function. [17][18][19][20] Tumors with alterations upstream of p53 would not respond adequately to genotoxic chemotherapeutics that act through the p53 pathway (eg, alkylating agents such as chlorambucil and cyclophosphamide; purine nucleosides such as fludarabine and cladribine; or topoisomerase inhibitors such as doxorubicin and mitoxantrone). Therefore, new therapies that overcome these For personal use only. on May 11, 2018. by guest www.bloodjournal.org From defects by acting directly on p53 stability may benefit these patients. Nutlins activate p53 by releasing it from MDM2-mediated negative control and thus compensate for d...
The rapid, transient induction of the c-fos proto-oncogene by serum growth factors is mediated by the serum response element (SRE). The SRE shares homology with the muscle regulatory element (MRE) of the skeletal ce-actin promoter. It is not known how these elements respond to proliferative and cell-type-specific signals, but the response appears to involve the binding of the serum response factor (SRF) and other proteins. Here, we report that YY1, a multifunctional transcription factor, binds to SRE and MRE sequences in vitro. The methylation interference footprint of YY1 overlaps with that of the SRF, and YY1 competes with the SRF for binding to these DNA elements. Overexpression of YY1 repressed serum-inducible and basal expression from the c-fos promoter and repressed basal expression from the skeletal a-actin promoter. YY1 also repressed expression from the individual SRE and MRE sequences upstream from a TATA element. Unlike that of YY1, SRF overexpression alone did not influence the transcriptional activity of the target sequence, but SRF overexpression could reverse YYl-mediated trans repression. These data suggest that YY1 and the SRF have antagonistic functions in vivo.The CC(AIT)6GG sequence, or CArG motif, is the core of a family of DNA regulatory elements that occur in the promoters and enhancers of genes which are subject to different regulatory controls (12,23). Included in this family of regulatory elements are the c-fos serum response element (SRE), which confers serum-inducible expression, and the skeletal a-actin muscle regulatory element (MRE), which is sufficient for muscle-specific expression when it is placed upstream from a TATA element (22,24). The serum response factor (SRF) binds to the core CArG motif of both elements, while other proteins directly bind to the sequences that flank the CArG motif (9,11,16,22,24,25). In addition, ets-related proteins bind to the c-fos SRE as part of a ternary complex with the SRF (1, 7). Complex protein-nucleic acid interactions presumably allow these elements to respond to diverse intracellular signals, but the functions of the individual factors are generally not known and contradictory findings have been reported (4, 8,10,17,20,26).Here, we report that the transcription factor YY1, also referred to as 6,14,19,21), specifically binds to the c-fos SRE and the skeletal actin MRE in vitro and that the binding of YY1 will inhibit the binding of the SRF transcription factor. YY1 overexpression represses transcription from the c-fos and skeletal actin promoters, and it appears that the repression is mediated, at least in part, by the CArG regulatory elements within these promoters. In contrast to that of YY1, SRF overexpression did not detectably alter expression from these elements; however, SRF overexpression could reverse YY1-mediated trans repression. These data suggest that YY1 and the SRF have antagonistic functions that may result from a competition for binding to DNA. promoter (positions -296 to -323). The MRE sequence is from the chicken skeletal ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.