Summary A common principle of tissue regeneration is the reactivation of previously employed developmental programs [1–3]. During zebrafish heart regeneration, cardiomyocytes in the cortical layer of the ventricle induce the transcription factor gene gata4 and proliferate to restore lost muscle [4–6]. A dynamic cellular mechanism initially creates this cortical muscle in juvenile zebrafish, where a small number of internal cardiomyocytes breach the ventricular wall and expand upon its surface [7]. Here, we find that emergent juvenile cortical cardiomyocytes induce expression of gata4 similarly as during regeneration. Clonal analysis indicates that these cardiomyocytes make biased contributions to build the ventricular wall, whereas gata4+ cardiomyocytes have little or no proliferation hierarchy during regeneration. Experimental microinjuries or conditions of rapid organismal growth stimulate production of ectopic gata4+ cortical muscle, implicating biomechanical stress in morphogenesis of this tissue and revealing clonal plasticity. Induced transgenic inhibition defined an essential role for Gata4 activity in morphogenesis of the cortical layer and the preservation of normal cardiac function in growing juveniles, and again in adults during heart regeneration. Our experiments uncover an injury-responsive program that prevents heart failure in juveniles by fortifying the ventricular wall, one that is reiterated in adults to promote regeneration after cardiac damage.
The transcription factor Gata4 is essential for normal heart morphogenesis and regulates the survival, growth, and proliferation of cardiomyocytes. We tested if Gata4 can specify cardiomyocyte fate from an uncommitted stem or progenitor cell population, by developing a system for conditional expression of Gata4 in embryonic stem cells. We find that in embryoid body cultures containing even a low ratio of these cells, expression of Gata4 is sufficient to enhance significantly the generation of cardiomyocytes, via a non-cell-autonomous mechanism. The Gata4-expressing cells do not generate cardiac or other mesoderm derivatives. Rather, Gata4 expression directs the development of two types of Sox17+ endoderm. This includes an epCam+Dpp4+ subtype of visceral endoderm. In addition, Gata4 generates similar amounts of epCam+Dpp4− definitive endoderm enriched for Cxcr4, FoxA2, FoxA3, Dlx5 and other characteristic transcripts. Both types of endoderm express cardiac-inducing factors, including WNT antagonists Dkk1 and Sfrp5, although the visceral endoderm subtype has much higher cardiac inducing activity correlating with relatively enhanced levels of transcripts encoding BMPs. The Gata4-expressing cells eventually express differentiation markers showing commitment to liver development, even under conditions that normally support mesoderm development. The results suggest that Gata4 is capable of specifying endoderm fates that facilitate, with temporal and spatial specificity, the generation of cardiomyocyte progenitors from associated mesoderm.
Objective. Autoimmune diseases predominantly affect women, suggesting that female sex hormones may play a role in the pathogenesis of such diseases. We have previously shown that persistent mild-to-moderate elevations in serum prolactin levels induce a break in self tolerance in mice with a BALB/c genetic background. The aim of this study was to evaluate the effects of hyperprolactinemia on the mechanisms of B cell tolerance induction.Methods. Effects of prolactin on splenic B cell subsets were studied in female BALB/c mice. B cell receptor ( Conclusion. Persistently elevated serum prolactin levels interfere with B cell tolerance induction by impairing BCR-mediated clonal deletion, deregulating receptor editing, and decreasing the threshold for activation of anergic B cells, thereby promoting autoreactivity.
The National Cancer Institute's (NCI) Surveillance, Epidemiology, and End Results (SEER) registries have been a source of biospecimens for cancer research for decades. Recently, registry-based biospecimen studies have become more practical, with the expansion of electronic networks for pathology and medical record reporting. Formalin-fixed paraffin-embedded specimens are now used for next-generation sequencing and other molecular techniques. These developments create new opportunities for SEER biospecimen research. We evaluated 31 research articles published during 2005–2013 based on author confirmation that these studies involved linkage of SEER data to biospecimens. Rather than providing an exhaustive review of all possible articles, our intent was to indicate the breadth of research made possible by such a resource. We also summarize responses to a 2012 questionnaire that was broadly distributed to the NCI intra- and extramural biospecimen research community. This included responses from 30 investigators who had used SEER biospecimens in their research. The survey was not intended to be a systematic sample, but instead to provide anecdotal insight on strengths, limitations, and the future of SEER biospecimen research. Identified strengths of this research resource include biospecimen availability, cost, and annotation of data, including demographic information, stage, and survival. Shortcomings include limited annotation of clinical attributes such as detailed chemotherapy history and recurrence, and timeliness of turnaround following biospecimen requests. A review of selected SEER biospecimen articles, investigator feedback, and technological advances reinforced our view that SEER biospecimen resources should be developed. This would advance cancer biology, etiology, and personalized therapy research.
Genetic simulation programs are used to model data under specified assumptions to facilitate the understanding and study of complex genetic systems. Standardized data sets generated using genetic simulation are essential for the development and application of novel analytical tools in genetic epidemiology studies. With continuing advances in high-throughput genomic technologies and generation and analysis of larger, more complex data sets, there is a need for updating current approaches in genetic simulation modeling. To provide a forum to address current and emerging challenges in this area, the National Cancer Institute (NCI) sponsored a workshop, entitled “Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases” at the National Institutes of Health (NIH) in Bethesda, Maryland on March 11-12, 2014. The goals of the workshop were to: (i) identify opportunities, challenges and resource needs for the development and application of genetic simulation models; (ii) improve the integration of tools for modeling and analysis of simulated data; and (iii) foster collaborations to facilitate development and applications of genetic simulation. During the course of the meeting the group identified challenges and opportunities for the science of simulation, software and methods development, and collaboration. This paper summarizes key discussions at the meeting, and highlights important challenges and opportunities to advance the field of genetic simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.