The biological activity of granulocyte-macrophage colony-stimulating factor (GM-CSF) is modulated by the sulfated glycosaminoglycans (GAGs) heparan sulfate and heparin. However, the molecular mechanisms involved in such interactions are still not completely understood. We have proposed previously that helix C, one of the four ␣-helices of human GM-CSF (hGM-CSF), contains a GAGbinding site in which positively charged residues are spatially positioned for interaction with the sulfate moieties of the GAGs (Wettreich, A., Sebollela, A., Carvalho, M. A., Azevedo, S. P., Borojevic, R., Ferreira, S. T., and CoelhoSampaio, T.
Natural laminin matrices are formed on cell membranes by a cooperative process involving laminin self-polymerization and binding to cognate cellular receptors. In a cell-free system, laminin can self-polymerize, given that a minimal critical concentration is achieved. We have previously described that pH acidification renders self-polymerization independent of protein concentration. Here we studied the ultrastructure of acid-induced laminin polymers using electron and atomic force microscopies. Polymers presented the overall appearance of natural matrices and could be described as homogeneous polygonal sheets, presenting struts of 21 ؎ 5 and 86 ؎ 3 nm of height, which approximately correspond to the sizes of the short and the long arms of the molecule, respectively. The addition of fragment E3 (the distal two domains of the long arm) did not affect the polymerization in solution nor the formation of adsorbed matrices. On the other hand, the addition of fragment E1, which contains two intact short arms, completely disrupted polymerization. These results indicate that acid-induced polymers, like natural ones, involve only interactions between the short arms. The electrostatic surface map of laminin ␣1 LG4 -5 shows that acidification renders the distal end in the long arms exclusively positive, precluding homophylic interactions between them. Therefore, acidification reproduces in vitro, and at a physiological protein concentration, what receptor interaction does in the cellular context, namely, it prevents the long arm from disturbing formation of the homogeneous matrix involving the short arms only. We propose that acid-induced polymers are the best tool to study cellular response to laminin in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.