Summary Alzheimer's disease (AD) is characterized by cognitive decline and 5–10 fold increased seizure incidence. How seizures contribute to cognitive decline in AD or other disorders is unclear. We show spontaneous seizures increase expression of ΔFosB, a highly stable Fos-family transcription factor, in the hippocampus of an AD mouse model. ΔFosB suppressed expression of the immediate early gene c-Fos, which is critical for plasticity and cognition, by binding its promoter and triggering histone deacetylation. Acute HDAC inhibition or inhibition of ΔFosB activity restored c-Fos induction and improved cognition in AD mice. Administration of seizure-inducing agents to nontransgenic mice also resulted in ΔFosB-mediated suppression of c-Fos, suggesting this mechanism is not confined to AD mice. These results explain observations that c-Fos expression increases after acute neuronal activity but decreases with chronic activity. Moreover, these results indicate a general mechanism by which seizures contribute to persistent cognitive deficits even during seizure-free periods.
The activity-induced transcription factor ∆FosB has been implicated in Alzheimer’s disease (AD) as a critical regulator of hippocampal function and cognition downstream of seizures and network hyperexcitability. With its long half-life (> 1 week), ∆FosB is well-poised to modulate hippocampal gene expression over extended periods of time, enabling effects to persist even during seizure-free periods. However, the transcriptional mechanisms by which ∆FosB regulates hippocampal function are poorly understood due to lack of identified hippocampal gene targets. To identify putative ∆FosB gene targets, we employed high-throughput sequencing of genomic DNA bound to ∆FosB after chromatin immunoprecipitation (ChIP-sequencing). We compared ChIP-sequencing results from hippocampi of transgenic mice expressing mutant human amyloid precursor protein (APP) and nontransgenic (NTG) wild-type littermates. Surprisingly, only 52 ∆FosB gene targets were shared between NTG and APP mice; the vast majority of targets were unique to one genotype or the other. We also found a functional shift in the repertoire of ∆FosB gene targets between NTG and APP mice. A large number of targets in NTG mice are involved in neurodevelopment and/or cell morphogenesis, whereas in APP mice there is an enrichment of targets involved in regulation of membrane potential and neuronal excitability. RNA-sequencing and quantitative PCR experiments confirmed that expression of putative ∆FosB gene targets were altered in the hippocampus of APP mice. This study provides key insights into functional domains regulated by ∆FosB in the hippocampus, emphasizing remarkably different programs of gene regulation under physiological and pathological conditions.
Drosophila groom away debris and pathogens from the body using their legs in a stereotyped sequence of innate motor behaviors. Here, we investigated one aspect of the grooming repertoire by characterizing the D1 family dopamine receptor, DopR. Removal of DopR results in decreased hind leg grooming, as substantiated by quantitation of dye remaining on mutant and RNAi animals vs. controls and direct scoring of behavioral events. These data are also supported by pharmacological results that D1 receptor agonists fail to potentiate grooming behaviors in headless DopR flies. DopR protein is broadly expressed in the neuropil of the thoracic ganglion and overlaps with TH‐positive dopaminergic neurons. Broad neuronal expression of dopamine receptor in mutant animals restored normal grooming behaviors. These data provide evidence for the role of DopR in potentiating hind leg grooming behaviors in the thoracic ganglion of adult Drosophila. This is a remarkable juxtaposition to the considerable role of D1 family dopamine receptors in rodent grooming, and future investigations of evolutionary relationships of circuitry may be warranted.
Seizure incidence is increased in Alzheimer's disease (AD) patients and mouse models, and treatment with the antiseizure drug levetiracetam improves cognition. We reported that one mechanism by which seizures can exert persistent effects on cognition is through accumulation of FosB, a transcription factor with a long half-life. Even the infrequent seizures that spontaneously occur in transgenic mice expressing human amyloid precursor protein (APP) lead to persistent increases in FosB in the hippocampus, similar to what we observed in patients with AD or temporal lobe epilepsy. FosB epigenetically regulates expression of target genes, however, whether FosB targets the same genes when induced by seizures in different neurological conditions is not clear. We performed ChIP-sequencing to assess the repertoire of FosB target genes in APP mice and in pilocarpine-treated wildtype mice (Pilo mice), a pharmacological model of epilepsy. These mouse models allowed us to compare AD, in which seizures occur in the context of high levels of amyloid beta, and epilepsy, in which recurrent seizures occur without AD-specific pathophysiology. Network profiling of genes bound by FosB in APP mice, Pilo mice, and respective control mice revealed that functional domains modulated by FosB in the hippocampus are expanded and diversified in APP and Pilo mice (vs. respective controls). Domains of interest in both disease contexts involved neuronal excitability and neurotransmission, neurogenesis, chromatin remodeling, and cellular stress and neuroinflammation. To assess the gene targets bound by FosB regardless of seizure etiology, we focused on 442 genes with significant FosB binding in both APP and Pilo mice (vs. respective controls). Functional analyses identified pathways that regulate membrane potential, glutamatergic signaling, calcium homeostasis, complement activation, neuron-glia population maintenance, and chromatin dynamics. RNA-sequencing and qPCR measurements in independent mice detected altered expression of several FosB targets shared in APP and Pilo mice. Our findings indicate that seizure-induced FosB can bind genes in patterns that depend on seizure etiology, but can bind other genes regardless of seizure etiology. Understanding
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.