This paper is concerned with questions of the following kind: let L be a language of the form Lαω and let be a class of modules over a fixed ring or a class of rings; is it possible to define in L? We will be mainly interested in the cases where L is Lωω or L∞ω and is a familiar class in homologic algebra or ring theory.In Part I we characterize the rings Λ such that the class of free (respectively projective, respectively flat) left Λ-modules is elementary. In [12] we solved the corresponding problems for injective modules; here we show that the class of injective Λ-modules is definable in L∞ω if and only if it is elementary. Moreover we identify the right noetherian rings Λ such that the class of projective (respectively free) left Λ-modules is definable in L∞ω.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.