Pre-mRNA splicing is functionally coupled to transcription, and genotoxic stresses can enhance alternative exon inclusion by affecting elongating RNA polymerase II. We report here that various genotoxic stress inducers, including camptothecin (CPT), inhibit the interaction between Ewing's sarcoma proto-oncoprotein (EWS), an RNA polymerase II-associated factor, and YB-1, a spliceosome-associated factor. This results in the cotranscriptional skipping of several exons of the MDM2 gene, which encodes the main p53 ubiquitin ligase. This reversible exon skipping participates in the regulation of MDM2 expression that may contribute to the accumulation of p53 during stress exposure and its rapid shut-off when stress is removed. Finally, a splicing-sensitive microarray identified numerous exons that are skipped in response to CPT and EWS-YB-1 depletion. These data demonstrate genotoxic stress-induced alteration of the communication between the transcriptional and splicing machineries, which results in widespread exon skipping and plays a central role in the genotoxic stress response.
Spinal muscular atrophy is an autosomal-recessive neuromuscular disease caused by disruption of the survival of motor neuron (SMN) gene, which promotes cytoplasmic assembly of the splicing core machinery. It remains unclear how a deficiency in SMN results in a disorder leading to selective degeneration of lower motor neurons. We report here that SMN interacts with RNA-binding protein HuD in neurites of motorneuron-derived MN-1 cells. This interaction is mediated through the Tudor domain of SMN and, importantly, naturally occurring Tudor mutations found in patients with severe spinal muscular atrophy (SMA) completely abrogate the interaction, underscoring its relevance to the disease process. We also characterized a regulatory pathway involving coactivator-associated arginine methyltransferase 1 (CARM1) and HuD. Specifically, we show that CARM1 expression is rapidly downregulated, at the protein level, following induction of differentiation through retinoid and neurotrophic signaling. Using purified proteins, we demonstrate that methylation of HuD by CARM1 reduces its interaction with the p21(cip1/waf1) mRNA, showing that CARM1 can directly influence RNA-binding activity. We further demonstrate that this CARM1-dependent regulatory switch mainly controls the activity of HuD in promoting cell-cycle exit, whereas the interaction between HuD and SMN is required for proper recruitment of HuD and its mRNA targets in neuronal RNA granules. Finally, we were able to rescue SMA-like defects in a hypomorphic Smn knockdown MN-1 cell line through overexpression of HuD. Together, these findings extend our understanding of specific role(s) of SMN in motor neurons and provide crucial insights into potential new avenues for SMA therapeutic strategies.
Pre-mRNA splicing and polyadenylation are tightly connected to transcription, and transcriptional stimuli and elongation dynamics can affect mRNA maturation. However, whether this regulatory mechanism has a physio/pathological impact is not known. In cancer, where splice variant expression is often deregulated, many mutated oncogenes are transcriptional regulators. In particular, the Ewing sarcoma (EwSa) oncogene, resulting from a fusion of the EWS and FLI1 genes, encodes a well characterized transcription factor. EWS-FLI1 directly stimulates transcription of the CCND1 protooncogene encoding cyclin D1a and a less abundant but more oncogenic splice isoform, D1b. We show that, although both EWS and EWS-FLI1 enhance cyclin D1 gene expression, they regulate the D1b/D1a transcript ratio in an opposite manner. Detailed analyses of RNA polymerase dynamics along the gene and of the effects of an inhibitor of elongation show that EWS-FLI1 favors D1b isoform expression by decreasing the elongation rate, whereas EWS has opposite effects. As a result, the D1b/D1a ratio is elevated in EwSa cell lines and tumors. The endogenous D1b protein is enriched in nuclei, where the oncogenic activity of cyclin D1 is known to occur, and depleting D1b in addition to D1a results in a stronger reduction of EwSa cell growth than depleting D1a only. These data show that elevated expression of a splice isoform in cancer can be due to an alteration of the transcription process by a mutated transcriptional regulator and provide evidence for a physio/pathological impact of the coupling between transcription and mRNA maturation.coregulator ͉ Ewing sarcoma ͉ EWS-FLI1 ͉ polyadenylation ͉ splicing G ene expression in cancer cells is altered at the transcriptional level by many mutated oncogenes acting as transcriptional regulators. A second level of gene expression that is often altered in cancer cells is pre-mRNA splicing. Indeed, most human genes give rise to several transcripts with different exon content because of alternative splicing and alternative cleavage/ polyadenylation sites (1). Genes involved in major cellular programs often give rise to splice isoforms with distinct biological activities and deregulated expression in cancer (2, 3). In some cases, cancer-associated deregulation of alternative splicing arises from mutations within splicing regulatory sequences or from alterations of the expression of splicing factors involved in splicing regulation (2, 3). However, only few splicing factors have been found to be altered in cancer. Moreover, the role of another level of splicing regulation that involves transcriptional regulators has not been investigated yet.It is now widely accepted that pre-mRNA splicing and 3Ј-end maturation are tightly connected to transcription in Metazoans and that transcription impacts RNA processing (4, 5). It has been shown that the recruitment of processing factors and the maturation of pre-mRNAs occur at least in part cotranscriptionally and are enhanced by RNA polymerase II (Pol II) and its phosphorylation (...
SMN1, the causative gene for spinal muscular atrophy (SMA), plays a housekeeping role in the biogenesis of small nuclear RNA ribonucleoproteins. SMN is also present in granular foci along axonal projections of motoneurons, which are the predominant cell type affected in the pathology. These so-called RNA granules mediate the transport of specific mRNAs along neurites and regulate mRNA localization, stability, as well as local translation. Recent work has provided evidence suggesting that SMN may participate in the assembly of RNA granules, but beyond that, the precise nature of its role within these structures remains unclear. Here, we demonstrate that SMN associates with polyribosomes and can repress translation in an in vitro translation system. We further identify the arginine methyltransferase CARM1 as an mRNA that is regulated at the translational level by SMN and find that CARM1 is abnormally up-regulated in spinal cord tissue from SMA mice and in severe type I SMA patient cells. We have previously characterized a novel regulatory pathway in motoneurons involving the SMN-interacting RNA-binding protein HuD and CARM1. Thus, our results suggest the existence of a potential negative feedback loop in this pathway. Importantly, an SMA-causing mutation in the Tudor domain of SMN completely abolished translational repression, a strong indication for the functional significance of this novel SMN activity in the pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.