Coronavirus disease 2019 (COVID-19) is a global pandemic affecting 185 countries and >3 000 000 patients worldwide as of April 28, 2020. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2, which invades cells through the angiotensin-converting enzyme 2 receptor. Among patients with COVID-19, there is a high prevalence of cardiovascular disease, and >7% of patients experience myocardial injury from the infection (22% of critically ill patients). Although angiotensin-converting enzyme 2 serves as the portal for infection, the role of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers requires further investigation. COVID-19 poses a challenge for heart transplantation, affecting donor selection, immunosuppression, and posttransplant management. There are a number of promising therapies under active investigation to treat and prevent COVID-19.
Information about a real patient is presented in stages (boldface type) to expert clinicians (Drs Uriel and Sayer), who respond to the information and share their reasoning with the reader (regular type). A discussion by the authors follows.
In patients with advanced heart failure, a fully magnetically levitated centrifugal-flow pump was superior to a mechanical-bearing axial-flow pump with regard to survival free of disabling stroke or reoperation to replace or remove a malfunctioning device. (Funded by Abbott; MOMENTUM 3 ClinicalTrials.gov number, NCT02224755 .).
An increasing number of devices can provide mechanical circulatory support (MCS) to patients with acute hemodynamic compromise and chronic end-stage heart failure. These devices work by different pumping mechanisms, have various flow capacities, are inserted by different techniques, and have different sites from which blood is withdrawn and returned to the body. These factors result in different primary hemodynamic effects and secondary responses of the body. However, these are not generally taken into account when choosing a device for a particular patient or while managing a patient undergoing MCS. In this review, we discuss fundamental principles of cardiac, vascular, and pump mechanics and illustrate how they provide a broad foundation for understanding the complex interactions between the heart, vasculature, and device, and how they may help guide future research to improve patient outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.