Despite the high number of victims of COVID-19, tuberculosis (TB) remains as the leading cause of death among infectious diseases worldwide. Since the beginning of the pandemic, there is an increasing number of studies trying to elucidate the interactions between
Mycobacterium tuberculosis
and SARS-CoV-2. The first case reports point to a worsening of respiratory symptoms in co-infected TB/COVID-19 individuals. However, data from the cohort studies has shown some conflicting results. This study proposes to conduct a systematic review on the current literature on TB/COVID-19 co-infection cohorts, evaluating clinical and epidemiological data, focusing on its implications to the immune system. From an immunological perspective, the TB/COVID-19 co-infection has the potential to generate a "perfect storm". The disorders induced by each pathogen to the immune modulation tend to induce an unbalanced inflammatory response, which can promote the progression and worsening of both diseases. Understanding the nature of the interactions between
M. tuberculosis
and SARS-CoV-2 will be crucial for the development of therapeutic strategies against co-infection.
In Mycobacterium tuberculosis (MTB) infection, the complex interaction of host immune system and the mycobacteria is associated with levels of cytokines production that play a major role in determining the outcome of the disease. Several single-nucleotide polymorphisms (SNPs) in cytokine genes have been associated with tuberculosis (TB) outcome. The aim of this study was to evaluate the association between previously reported SNPs IL2–330 T>G (rs2069762); IL4–590 C>T (rs2243250); IL6–174 G>C (rs1800795); IL10–592 A>C (rs1800872); IL10–1082 G>A (rs1800896); IL17A -692 C>T (rs8193036); IL17A -197 G>A (rs2275913); TNF -238 G>A (rs361525); TNF -308 G>A (rs1800629) and IFNG +874 T>A (rs2430561) and pulmonary TB (PTB) susceptibility. We conducted a case-control study in individuals from Southern Brazil who were recruited between February 2012 and October 2013 in a high incidence TB city. We performed a multiplex genotyping assay in 191 patients with PTB and 175 healthy subjects. Our results suggest a decreased risk for PTB development associated with the IL17A -197A allele (OR = 0.29; p = 0.04), AA genotype (OR = 0.12; p = 0.04) and A carrier (AGAA) (OR = 0.29; p = 0.004) and IL6 -174C carrier (CC/CG) (OR = 0.46; p = 0.04). We could not properly analyze IL17A -692 C>T (rs8193036) and IFNG +874T>A due to genotypic inconsistencies and found no evidence of association for the IL2, IL4, IL10 and TNF polymorphisms and PTB. In conclusion, our results show a protective effect of IL17 and IL6 polymorphisms on PTB outcome in Southern Brazilian population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.