The cultivation of oleaginous yeasts on various agro-industrial residues and the subsequent production of microbial lipids (single-cell oils), which can be used as starting materials for the synthesis of both “second generation” biodiesel and various types of oleochemicals, is considered as one of the most important approaches of the Industrial Biotechnology, in terms of circular economy and green and sustainable development. In this study, seven wild-type non-conventional yeast strains were evaluated for their growth on a semi-defined medium with cheese whey lactose as a sole carbon source. Five of these strains were further batch-cultivated into the complex substrate that contained second cheese whey, which is the main by-product of Mizithra whey cheese manufacture, after centrifugation and filtration without any extra mineral salts, carbon, or nitrogen source addition. All these five strains grown in second cheese whey produced mainly yeast biomass and to lesser extent microbial lipids and other interesting metabolites, such as polysaccharides. The strain Cryptococcus curvatus ATCC 20509 produced the highest total dry weight (TDW) amount (22.4 g/L), that contained 3.4 g/L of intra-cellular lipids, followed by C. curvatus NRRL Y-1511, which produced 20.6 g/L of TDW and 3.2 g/L lipids. A novel, non-previously systematically studied strain, namely Papiliotrema laurentii NRRL Y-2536, produced significant quantities of TDW (22.0 g/L) and, interestingly, secreted quantities of exopolysaccharides. Fed-batch shake-flask cultivation of C. curvatus ATCC 20509 in pretreated second cheese whey, pulse-supplemented with condensed cheese whey-derived lactose, led to the significant TDW quantity of 38.1 g/L that contained c. 57% w/w of total lipids (lipids at a concentration 21.7 g/L were produced). Cellular lipids of all microorganisms, mainly stored as triacylglycerols, contained in variable quantities the fatty acids Δ9C18:1, C16:0, Δ9,12C18:2 and C18:0, constituting perfect candidates for the synthesis of “second generation” biodiesel.
A study on the ability of new microbial strains to assimilate biodiesel-derived glycerol at low purity (75% w/w) and produce extra-cellular platform chemical compounds of major interest was carried out. After screening several bacterial strains under different fermentation conditions (e.g., pH, O2 availability, glycerol purity), three of the screened strains stood out for their high potential to produce valued-added products such as 2,3-butanediol (BDO), 1,3-propanediol (PDO) and ethanol (EtOH). The results indicate that under aerobic conditions, Klebsiella oxytoca ACA-DC 1581 produced BDO in high yield (YBDO/Gly = 0.46 g/g, corresponding to 94% of the maximum theoretical yield; Ymt) and titer, while under anaerobic conditions, Citrobacter freundii NRRL-B 2645 and Enterobacter ludwigii FMCC-204 produced PDO (YPDO/Gly = 0.56 g/g, 93% of Ymt) and EtOH (YEtOH/Gly = 0.44 g/g, 88% of Ymt), respectively. In the case of C. freundii, the regulation of pH proved to be mandatory, due to lactic acid production and a subsequent drop of pH that resulted in fermentation ceasing. In the fed-batch culture of K. oxytoca, the BDO maximum titer reached almost 70 g/L, the YBDO/Gly and the mean productivity value (PrBDO) were 0.47 g/g and 0.4 g/L/h, respectively, while no optimization was imposed. The final BDO production obtained by this wild strain (K. oxytoca) is among the highest in the international literature, although the bioprocess requires optimization in terms of productivity and total cost. In addition, for the first time in the literature, a strain from the species Hafnia alvei (viz., Hafnia alvei ACA-DC 1596) was reported as a potential BDO producer. The strains as well as the methodology proposed in this study can contribute to the development of a biorefinery that complements the manufacture of biofuels with high-value biobased chemicals.
Valorization of lignocellulosic biomass, such as Spent Mushroom Substrate (SMS), as an alternative substrate for biogas production could meet the increasing demand for energy. In view of this, the present study aimed at the biotechnological valorization of SMS for biogas production. In the first part of the study, two SMS chemical pretreatment processes were investigated and subsequently combined with thermal treatment of the mentioned waste streams. The acidic chemical hydrolysate derived from the hydrothermal treatment, which yielded in the highest concentration of free sugars (≈36 g/100 g dry SMS, hydrolysis yield ≈75% w/w of holocellulose), was used as a potential feedstock for biomethane production in a laboratory bench-scale improvised digester, and 52 L biogas/kg of volatile solids (VS) containing 65% methane were produced in a 15-day trial of anaerobic digestion. As regards the alkaline hydrolysate, it was like a pulp due to the lignocellulosic matrix disruption, without releasing additional sugars, and the biogas production was delayed for several days. The biogas yield value was 37 L/kg VS, and the methane content was 62%. Based on these results, it can be concluded that SMS can be valorized as an alternative medium employed for anaerobic digestion when pretreated with both chemical and hydrothermal hydrolysis.
In the pursuit of sustainable sources for food, energy, and health products, microalgae have gained attention. In the present study, the lagoonal system of the Nestos River delta was selected as a sampling point in order to search for opportunistic and robust species. Two new strains of Tetraselmis are described with regards to their taxonomic features (as observed using light and transmission electron microscopy and molecular phylogenetics) and their biochemical properties (total lipid, total protein, and total carbohydrate content, photosynthetic pigments, and antioxidant capacity). The studied strains were identified as representatives of Tetraselmis verrucosa f. rubens. Furthermore, both strains exhibited an interesting biochemical profile coupled with high growth rates and promising antioxidant activity, without the use of enhancement and induction culture methods, warranting further investigation and showing potential for biotechnological use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.