Chronic recurrent multifocal osteomyelitis (CRMO) is a rare, pediatric, autoinflammatory disease characterized by bone pain due to sterile osteomyelitis, and is often accompanied by psoriasis or inflammatory bowel disease. There are two syndromic forms of CRMO, Majeed syndrome and DIRA, for which the genetic cause is known. However, for the majority of cases of CRMO, the genetic basis is unknown. Via whole-exome sequencing, we detected a homozygous mutation in the filamin-binding domain of FBLIM1 in an affected child with consanguineous parents. Microarray analysis of bone marrow macrophages from the CRMO murine model (cmo) determined that the Fblim1 ortholog is the most differentially expressed gene, downregulated over 20-fold in the cmo mouse. We sequenced FBLIM1 in 96 CRMO subjects and found a second proband with a novel frameshift mutation in exon 6 and a rare regulatory variant. In SaOS2 cells, overexpressing the regulatory mutation showed the flanking region acts as an enhancer, and the mutation ablates enhancer activity. Our data implicate FBLIM1 in the pathogenesis of sterile bone inflammation and our findings suggest CRMO is a disorder of chronic inflammation and imbalanced bone remodeling.
BackgroundPregnancy poses specific challenges for the diagnosis of Plasmodium falciparum infection due to parasite sequestration in the placenta, which translates in low circulation levels in peripheral blood. The aim of this study is to assess the performance of a new highly sensitive rapid diagnostic test (HS-RDT) for the detection of malaria in peripheral and placental blood samples from pregnant women in Colombia.MethodsThis is a retrospective study using 737 peripheral and placental specimens collected from pregnant women in Colombian malaria-endemic regions. Light microscopy (LM), conventional rapid diagnostic tests (Pf/Pv RDT and Pf RDT), and HS-RDT testing were performed. Diagnostic accuracy endpoints of LM, HS-RDT and RDTs were compared with nested polymerase chain reaction (nPCR) as the reference test.ResultsIn comparison with nPCR, the sensitivity of HS-RDT, Pf RDT, Pf/Pv RDT and LM to detect infection in peripheral samples was 85.7% (95% CI = 70.6–93.7), 82.8% (95% CI = 67.3–91.9), 77.1% (95% CI = 61.0–87.9) and 77.1% (95% CI = 61.0–87.9) respectively. The sensitivity to detect malaria in asymptomatic women, was higher with HS-RDT, where LM and Pf/Pv RDT missed half of infections detected by nPCR, but differences were not significant. Overall, specificity was similar for all tests (>99.0%). In placental blood, the prevalence of infection by P. falciparum by nPCR was 2.8% (8/286), by HS-RDT was 1% and by conventional RDTs (Pf RDT and Pf/Pv RDT) and LM was 0.7%. The HS-RDT detected placental infections in peripheral blood that were negative by LM and Pf/Pv RDT, however the number of positive placentas was low.ConclusionsThe sensitivity of HS-RDT to detect P. falciparum infections in peripheral and placental samples from pregnant women was slightly better compared to routinely used tests during ANC visits and at delivery. Although further studies are needed to guide recommendations on the use of the HS-RDT for malaria case management in pregnancy, this study shows the potential value of this test to diagnose malaria in pregnancy in low-transmission settings.
Hyperopia (farsightedness) is a common and significant cause of visual impairment, and extreme hyperopia (nanophthalmos) is a consequence of loss-of-function MFRP mutations. MFRP deficiency causes abnormal eye growth along the visual axis and significant visual comorbidities, such as angle closure glaucoma, cystic macular edema, and exudative retinal detachment. The Mfrp rd6 /Mfrp rd6 mouse is used as a pre-clinical animal model of retinal degeneration, and we found it was also hyperopic. To test the effect of restoring Mfrp expression, we delivered a wild-type Mfrp to the retinal pigmented epithelium (RPE) of Mfrp rd6 /Mfrp rd6 mice via adeno-associated viral (AAV) gene therapy. Phenotypic rescue was evaluated using non-invasive, human clinical testing, including fundus auto-fluorescence, optical coherence tomography, electroretinography, and ultrasound. These analyses showed gene therapy restored retinal function and normalized axial length. Proteomic analysis of RPE tissue revealed rescue of specific proteins associated with eye growth and normal retinal and RPE function. The favorable response to gene therapy in Mfrp rd6 /Mfrp rd6 mice suggests hyperopia and associated refractive errors may be amenable to AAV gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.