Introduction Syphilis is a sexually transmitted disease (STD) caused by Treponema pallidum subspecies pallidum. In 2016, it was declared an epidemic in Brazil due to its high morbidity and mortality rates, mainly in cases of maternal syphilis (MS) and congenital syphilis (CS) with unfavorable outcomes. This paper aimed to mathematically describe the relationship between MS and CS cases reported in Brazil over the interval from 2010 to 2020, considering the likelihood of diagnosis and effective and timely maternal treatment during prenatal care, thus supporting the decision-making and coordination of syphilis response efforts. Methods The model used in this paper was based on stochastic Petri net (SPN) theory. Three different regressions, including linear, polynomial, and logistic regression, were used to obtain the weights of an SPN model. To validate the model, we ran 100 independent simulations for each probability of an untreated MS case leading to CS case (PUMLC) and performed a statistical t-test to reinforce the results reported herein. Results According to our analysis, the model for predicting congenital syphilis cases consistently achieved an average accuracy of 93% or more for all tested probabilities of an untreated MS case leading to CS case. Conclusions The SPN approach proved to be suitable for explaining the Notifiable Diseases Information System (SINAN) dataset using the range of 75–95% for the probability of an untreated MS case leading to a CS case (PUMLC). In addition, the model’s predictive power can help plan actions to fight against the disease.
Osteoporosis is a disease characterized by impairment of bone microarchitecture that causes high socioeconomic impacts in the world because of fractures and hospitalizations. Although dual-energy X-ray absorptiometry (DXA) is the gold standard for diagnosing the disease, access to DXA in developing countries is still limited due to its high cost, being present only in specialized hospitals. In this paper, we analyze the performance of Osseus, a low-cost portable device based on electromagnetic waves that measures the attenuation of the signal that crosses the medial phalanx of a patient’s middle finger and was developed for osteoporosis screening. The analysis is carried out by predicting changes in bone mineral density using Osseus measurements and additional common risk factors used as input features to a set of supervised classification models, while the results from DXA are taken as target (real) values during the training of the machine learning algorithms. The dataset consisted of 505 patients who underwent osteoporosis screening with both devices (DXA and Osseus), of whom 21.8% were healthy and 78.2% had low bone mineral density or osteoporosis. A cross-validation with k-fold = 5 was considered in model training, while 20% of the whole dataset was used for testing. The obtained performance of the best model (Random Forest) presented a sensitivity of 0.853, a specificity of 0.879, and an F1 of 0.859. Since the Random Forest (RF) algorithm allows some interpretability of its results (through the impurity check), we were able to identify the most important variables in the classification of osteoporosis. The results showed that the most important variables were age, body mass index, and the signal attenuation provided by Osseus. The RF model, when used together with Osseus measurements, is effective in screening patients and facilitates the early diagnosis of osteoporosis. The main advantages of such early screening are the reduction of costs associated with exams, surgeries, treatments, and hospitalizations, as well as improved quality of life for patients.
Purpose Primary Health Care (PHC) is the coordinator of health care in Brazil and needs to be strengthened in the diagnostic field to increase health care quality. Aiming to improve the diagnostic tools currently available in PHC, this work describes the process of development and validation of two point-of-care biomedical devices for screening patients with syphilis or different kinds of cancer. Methods The development of these devices followed nine stages of action based on the requirements established by the Ministry of Health. During development, both systems followed the stages of circuit planning, software simulation to verify the components used, cost assessment for the acquisition of features, simulation in contact matrix, development of the embedded system, and planning of the printed circuit board and storage box. Results Both devices underwent preliminary functionality tests to assess their quality. The performance tests applied on the device to diagnose syphilis performed 8,733,194 requests, with a flow of 2426 requests/second, reaching the desired parameters of robustness, integrity, durability, and stability. In addition, functioning tests on the cancer-screening device indicated the ability to detect standard fluorescence in a minimal (150 uL) sample volume. Conclusions Together, the methodology used for developing the devices resulted in promising equipment to improve the diagnosis and meet the requirements for executing technologies for testing and triaging patients in PHC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.