Epidemiological, clinical, and experimental data indicate that the risk of developing breast cancer is strongly dependent on the ovary and on endocrine conditions modulated by ovarian function, such as early menarche, late menopause, and parity. Women who gave birth to a child when they were younger than 24 years of age exhibit a decrease in their lifetime risk of developing breast cancer, and additional pregnancies increase the protection. The breast tissue of normally cycling women contains three identifiable types of lobules, the undifferentiated Lobules type 1 (Lob 1) and the more developed Lobules type 2 and Lobules type 3. The breast attains its maximum development during pregnancy and lactation (Lobules type 4). After menopause the breast regresses in both nulliparous and parous women containing only Lob 1. Despite the similarity in the lobular composition of the breast at menopause, the fact that nulliparous women are at higher risk of developing breast cancer than parous women indicates that Lob 1 in these two groups of women might be biologically different, or might exhibit different susceptibility to carcinogenesis. Based on these observations it was postulated that Lob 1 found in the breast of nulliparous women and of parous women with breast cancer never went through the process of differentiation, retaining a high concentration of epithelial cells that are targets for carcinogens and are therefore susceptible to undergo neoplastic transformation. These epithelial cells are called Stem cells 1, whereas Lob 1 structures found in the breast of early parous postmenopausal women free of mammary pathology, on the contrary, are composed of an epithelial cell population that is refractory to transformation, called Stem cells 2. It was further postulated that the degree of differentiation acquired through early pregnancy has changed the 'genomic signature' that differentiates Lob 1 of the early parous women from that of the nulliparous women by shifting the Stem cells 1 to Stem cells 2 that are refractory to carcinogenesis, making this the postulated mechanism of protection conferred by early full-term pregnancy. The identification of a putative breast stem cell (Stem cells 1) has, in the past decade, reached a significant impulse, and several markers also reported for other tissues have been found in the mammary epithelial cells of both rodents and humans. Although further work needs to be carried out in order to better understand the role of the Stem cells 2 and their interaction with the genes that confer them a specific signature, collectively the data presently available provide evidence that pregnancy, through the process of cell differentiation, shifts Stem cells 1 to Stem cells 2 -cells that exhibit a specific genomic signature that could be responsible for the refractoriness of the mammary gland to carcinogenesis. The protective effect of parity in breast cancerThe incidence of breast cancer has gradually increased in the United States and in most Western countries over the past few decades...
We have investigated the molecular mechanisms involved in 17 beta-estradiol-induced angiogenic pathway. We show here that 17 beta-estradiol promoted a 6-fold increase in Jagged1 expression and an 8-fold increase in Notch1 expression by cDNA arrays in breast cancer MCF7 cells. Interestingly, Jagged1 was abrogated by incubation with the estrogen antagonist, ICI182,780. A similar up-regulation of both Notch1 receptor and Jagged1 ligand was found in endothelial cells. Additionally, imperfect estrogen-responsive elements were found in the 5' untranslated region of Notch1 and Jagged1 genes. Treatment with 17 beta-estradiol also led to an activation of Notch signaling in MCF7 cells expressing Notch1 reporter gene or by promoting Jagged1-induced Notch signaling in coculture assays. Inoculation of MCF7 cells in 17 beta-estradiol-treated nude mice resulted in up-regulation of Notch1 expression as well as increased number of tumor microvessels in comparison to placebo-treated mice. Notch1-expressing endothelial cell cultures formed cord-like structures on Matrigel in contrast to cells expressing a dominant-negative form of Notch1, emphasizing the relevance of Notch1 pathway in vessel assembly. Finally, Notch1-expressing MCF7 cells up-regulated hypoxia-inducible factor 1 alpha gene, a well-known angiogenic factor that clustered with Notch1 gene. This study implicates Notch signaling in the cross talk between 17 beta-estradiol and angiogenesis.
Breast cancer risk has traditionally been linked to nulliparity or late first full-term pregnancy, whereas young age at first childbirth, multiparity, and breastfeeding are associated with a reduced risk. Early pregnancy confers protection by inducing breast differentiation, which imprints a specific and permanent genomic signature in experimental rodent models. For testing whether the same phenomenon was detectable in the atrophic breast of postmenopausal parous women, we designed a case-control study for the analysis of the gene expression profile of RNA extracted from epithelial cells microdissected from normal breast tissues obtained from 18 parous and 7 nulliparous women free of breast pathology (controls), and 41 parous and 8 nulliparous women with history of breast cancer (cases). RNA was hybridized to cDNA glass microarrays containing 40,000 genes; arrays were scanned and the images were analyzed using ImaGene software version 4.2. Normalization and statistical analysis were carried out using Linear Models for Microarrays and GeneSight software for hierarchical clustering. The parous control group contained 2,541 gene sequences representing 18 biological processes that were differentially expressed in comparison with the other three groups. Hierarchical clustering of these genes revealed that the combined parity/absence of breast cancer data generated a distinct genomic profile that differed from those of the breast cancer groups, irrespective of parity history, and from the nulliparous cancer-free group, which has been traditionally identified as a high-risk group. The signature that identifies those women in whom parity has been protective will serve as a molecular biomarker of differentiation for evaluating the potential use of preventive agents. (Cancer Epidemiol Biomarkers Prev 2008;17(1):51 -66)
Purpose: Human Cripto-1 (CR-1), a cell membrane glycosylphosphatidylinositol-anchored glycoprotein that can also be cleaved from the membrane, is expressed at high levels in several different types of human tumors.We evaluated whether CR-1is present in the plasma of patients with breast and colon cancer, and if it can represent a new biomarker for these malignancies. Experimental Design: We determined CR-1 plasma levels using a sandwich-type ELISA in 21 healthy volunteers, 54 patients with breast cancer, 33 patients with colon carcinoma, and 21 patients with benign breast lesions. Immunohistochemical analysis was also used to assess CR-1expression in cancerous tissues. Results: Very low levels of CR-1 (mean F SD) were detected in the plasma of healthy volunteers (0.32 F 0.19 ng/mL). A statistically significant increase in the levels of plasma CR-1was found in patients with colon carcinoma (4.68 F 3.5 ng/mL) and in patients with breast carcinoma (2.97 F 1.48 ng/mL; P < 0.001). Although moderate levels of plasma CR-1 were found in women with benign lesions of the breast (1.7 F 0.99 ng/mL), these levels were significantly lower than in patients with breast cancer (P < 0.001). Finally, immunohistochemical analysis and real-time reverse transcription-PCR confirmed strong positivity for CR-1 in colon and/or breast tumor tissues. Conclusion: This study suggests that plasma CR-1 might represent a novel biomarker for the detection of breast and colon carcinomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.