The pollen content of 58 honey samples of Apis mellifera L. from the Andean region of Chubut (Argentinian Patagonia) was analyzed. The samples were provided by beekeepers between 1999 and 2004. Eighty-eight pollen types were identified, 30 of them are not reported in Argentinian honeys. Identified types belong to 47 families, of which the most diverse were Asteraceae (15 pollen types), Fabaceae (13 pollen types), and Rosaceae (four pollen types). From the samples analyzed, 47% were monofloral and corresponded to the following taxa: Trifolium spp. (16%), Rosaceae (10%), Aristotelia chilensis (Molina) Stuntz (7%), Discaria-Colletia (5%), Escallonia spp. (3%), Schinus patagonica (Phil.) I. M. Johnst. (2%), Phacelia secunda J. F. Gmel. (2%), Myrtaceae (2%). The results of this study show a high level of utilization of native flora by Apis mellifera. Four new types of monofloral honey were recognized: Aristotelia chilensis, Discaria-Colletia, Phacelia secunda, and Schinus patagonica. The high representation of native flora distinguishes these honeys geographically.
Large nuisance blooms of Didymosphenia geminata have become increasingly widespread in Patagonia. Although the first published account for South America was in 1964, reports of large growths in Chile and Argentina commenced around 2010. Since then, these blooms have been observed all along the Andes region to the south of parallel 42 S. General surveys are needed to help provide an explanation. Possibilities include one or more new genetic variants or responses of local populations to global environmental changes. Electron microscopy of material from the Argentinean Patagonia revealed marked differences between regions, though it is unclear how much local factors and/or variations in life cycle contribute. Thus, we are approaching the problem from a molecular perspective, which we hope will help to overcome this limitation. Initial studies showed that D. geminata seems to be highly recalcitrant to DNA extraction, thus hindering the survey of molecular markers. We have now developed an improved DNA extraction technique for Didymosphenia mats, which markedly outperforms other techniques. However, endpoint polymerase chain reaction analyses suggest the persistence of polymerase chain reaction inhibitors in the samples, highlighting the need of further improvements for quantitative studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.