Widespread use of pneumococcal conjugate vaccines (PCVs) has led to substitution of vaccine-type (VT) strains by non-vaccine type (NVT) strains in nasopharyngeal carriage. We compared the efficacy of PCV13 and a nasal protein formulation containing pneumococcal surface protein A (PspA) adjuvanted with the whole-cell pertussis vaccine (wP) in the protection against co-colonization challenge models in mice with VT and NVT strains expressing different PspAs. Immunized mice were challenged with two different mixtures: i. VT4 (PspA3) + NVT33 (PspA1) and ii. VT23F (PspA2) + NVT15B/C (PspA4). Results from the first mixture showed a reduction in loads of VT4 strain in the nasopharynx of mice immunized with PCV13. A statistical difference between the loads of the VT and NVT strains was observed, indicating a competitive advantage for the NVT strain in PCV13-immunized animals. In the second mixture, no reduction was observed for the VT23F strain, probably due to low levels of anti-23F polysaccharide IgG induced by PCV13. Interestingly, a combination of the PspA formulation containing wP with PCV13 led to a reduction in colonization with both strains of the two mixtures tested, similar to the groups immunized nasally with wP or PspA plus wP. These results indicate that a combination of vaccines may be a useful strategy to overcome pneumococcal serotype replacement.
Older adults are at increased risk of pneumococcal disease. This work aims to evaluate whether there is any decrease in serum IgG against variants of the antigens Pneumococcal surface protein A (PspA) and Pneumococcal surface protein C (PspC) in healthy adults with increasing age. Levels of IgG against PspA and PspC variants were determined by ELISA in serum samples comparing volunteers 18–30 years of age with volunteers who were 50–70+ before and after an experimental pneumococcal colonization challenge. The serotype 6B strain used in the challenge belongs to a minor group of pneumococcal isolates expressing two PspC variants. There was a decrease in levels of IgG with increasing age for the most common PspA variants and for all PspC variants analyzed. No correlation was found between basal levels of IgG against these antigens and protection against colonization. There was an increase in levels of IgG against PspA variants that are more cross-reactive with the variant expressed by the challenge strain post challenge in younger individuals who became colonized. Since the challenge strain used in our study expresses two different PspC variants, an increase in serum IgG against all PspC variants tested was observed in younger individuals who became colonized. For some of the antigen variants tested, a decrease in serum IgG was observed in young volunteers who were challenged but did not become colonized. Serum IgG antibodies against PspA and PspC variants thus decrease with age in healthy adults, but there is no correlation between levels of IgG against these antigens and protection against human experimental colonization. Though no correlation between naturally induced serum IgG antibodies against PspA and PspC and protection against colonization was observed, these results do not rule out the protective potential of these antigens as vaccines against pneumococcal infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.