Traditional remedies have a long-standing history in Cameroon and continue to provide useful and applicable tools for treating ailments. Here, the anticancer, antimicrobial and antioxidant activities of ten antioxidant-rich Cameroonian medicinal plants and of some of their isolated compounds are evaluated.The plant extracts were prepared by maceration in organic solvents. Fractionation of plant extract was performed by column chromatography and the structures of isolated compounds (emodin, 3-geranyloxyemodin, 2-geranylemodin) were confirmed spectroscopically. The antioxidant activity (AOA) was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) bleaching method, the trolox equivalent antioxidant capacity (TEAC), and the hemoglobin ascorbate peroxidase activity inhibition (HAPX) assays. The anticancer activity was evaluated against A431 squamous epidermal carcinoma, WM35 melanoma, A2780 ovary carcinoma and cisplatin-resistant A2780cis cells, using a direct colorimetric assay. The total phenolic content in the extracts was determined spectrophotometrically by the Folin–Ciocalteu method. Rumex abyssinicus showed the best AOA among the three assays employed. The AOA of emodin was significantly higher than that of 3-geranyloxyemodin and 2-geranylemodin for both TEAC and HAPX methods. The lowest IC50 values (i.e., highest cytotoxicity) were found for the extracts of Vismia laurentii, Psorospermum febrifugum, Pentadesma butyracea and Ficus asperifolia. The Ficus asperifolia and Psorospermum febrifugum extracts are selective against A2780cis ovary cells, a cell line which is resistant to the standard anticancer drug cisplatin. Emodin is more toxic compared to the whole extract, 3-geranyloxyemodin and 2-geranylemodin. Its selectivity against the platinum-resistant A2780cis cell line is highest. All of the extracts display antimicrobial activity, in some cases comparable to that of gentamycin.
BackgroundThe development of novel biomaterials able to control cell activities and direct their fate is warranted for engineering functional bone tissues. Adding bioactive materials can improve new bone formation and better osseointegration. Three types of titanium (Ti) implants were tested for in vitro biocompatibility in this comparative study: Ti6Al7Nb implants with 25% total porosity used as controls, implants infiltrated using a sol–gel method with hydroxyapatite (Ti HA) and silicatitanate (Ti SiO2). The behavior of human osteoblasts was observed in terms of adhesion, cell growth and differentiation.ResultsThe two coating methods have provided different morphological and chemical properties (SEM and EDX analysis). Cell attachment in the first hour was slower on the Ti HA scaffolds when compared to Ti SiO2 and porous uncoated Ti implants. The Alamar blue test and the assessment of total protein content uncovered a peak of metabolic activity at day 8–9 with an advantage for Ti SiO2 implants. Osteoblast differentiation and de novo mineralization, evaluated by osteopontin (OP) expression (ELISA and immnocytochemistry), alkaline phosphatase (ALP) activity, calcium deposition (alizarin red), collagen synthesis (SIRCOL test and immnocytochemical staining) and osteocalcin (OC) expression, highlighted the higher osteoconductive ability of Ti HA implants. Higher soluble collagen levels were found for cells cultured in simple osteogenic differentiation medium on control Ti and Ti SiO2 implants. Osteocalcin (OC), a marker of terminal osteoblastic differentiation, was most strongly expressed in osteoblasts cultivated on Ti SiO2 implants.ConclusionsThe behavior of osteoblasts depends on the type of implant and culture conditions. Ti SiO2 scaffolds sustain osteoblast adhesion and promote differentiation with increased collagen and non-collagenic proteins (OP and OC) production. Ti HA implants have a lower ability to induce cell adhesion and proliferation but an increased capacity to induce early mineralization. Addition of growth factors BMP-2 and TGFβ1 in differentiation medium did not improve the mineralization process. Both types of infiltrates have their advantages and limitations, which can be exploited depending on local conditions of bone lesions that have to be repaired. These limitations can also be offset through methods of functionalization with biomolecules involved in osteogenesis.
There is an increasing interest in the use of natural antioxidants as photoprotective agents against skin damages produced by ultraviolet radiation. The aim of our study was to investigate the protective effect of a Calluna vulgaris extract in human keratinocytes (HaCaT) exposed to ultraviolet B (UVB) radiation. HaCaT cells were treated with C. vulgaris extract 30 minutes prior to irradiation with UVB. The protective effect was evaluated by assessing cell viability using tetrasolium salt (MTT) assay; the generation of lipid peroxides was evaluated using malondialdehide assay (MDA); and DNA damage was evaluated using the comet assay and the quantification by ELISA of specific DNA photolesions [i.e., cyclobutane-pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs)]. After irradiation with cytotoxic doses of UVB (300 and 500 mJ/cm(2)), HaCaT cells pretreated with C. vulgaris extract (50 μg GAE/ml) showed significantly increased viability compared to control cells exposed to UVB only. Irradiation alone increased MDA levels in a dose-dependent fashion. Pretreatment with 12 μg GAE/ml extract lowered MDA levels both at 100 mJ/cm(2) (ρ<0.01) and 300 mJ/cm(2) (ρ<0.001). Treatment with C. vulgaris extract before exposure to UVB also reduced DNA damage: Lesion scores in a comet assay were significantly reduced at UVB doses of 50 mJ/cm2 (ρ<0.01) and 100 mJ/cm(2) (ρ<0.05), while CPDs and 6-4PPs (via ELISA) were significantly lower after irradiation with 100 mJ/cm(2) in the protected cells (ρ<0.05 for CPDs and ρ<0.001 for 6-4PPs). These results recommend the use of the C. vulgaris extract as photoprotective agent, in combination with sunscreens and/or other natural products with similar or complementary properties.
Currently, there is no cure for the permanent vision loss caused by degenerative retinal diseases. One of the novel therapeutic strategies aims at the development of stem cells (SCs) based neuroprotective and regenerative medicine. The main sources of SCs for the treatment of retinal diseases are the embryo, the bone marrow, the region of neuronal genesis, and the eye. The success of transplantation depends on the origin of cells, the route of administration, the local microenvironment, and the proper combinative formula of growth factors. The feasibility of SCs based therapies for degenerative retinal diseases was proved in the preclinical setting. However, their translation into the clinical realm is limited by various factors: the immunogenicity of the cells, the stability of the cell phenotype, the predilection of SCs to form tumors in situ, the abnormality of the microenvironment, and the association of a synaptic rewiring. To improve SCs based therapies, nanotechnology offers a smart delivery system for biomolecules, such as growth factors for SCs implantation and differentiation into retinal progenitors. This review explores the main advances in the field of retinal transplantology and applications of nanotechnology in the treatment of retinal diseases, discusses the challenges, and suggests new therapeutic approaches in retinal transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.