The present study examined whether Event-Related Potential (ERP) components and their neural generators are common to perceptual and conceptual prospective memory (PM) tasks or specific to the form of PM cue involved. We used Independent Component Analysis (ICA) to study the contributions of brain source activities to scalp ERPs across the different phases of two event-based PM-tasks: (1) holding intentions during a delay (monitoring) (2) detecting the correct context to perform the delayed intention (cue detection) and (3) carrying out the action (realisation of delayed intentions). Results showed that monitoring for both perceptual and conceptual PM-tasks was characterised by an enhanced early occipital negativity (N200). In addition the conceptual PM-task showed a long-lasting effect of monitoring significant around 700 ms. Perceptual PM-task cues elicited an N300 enhancement associated with cue detection, whereas a midline N400-like response was evoked by conceptual PM-task cues. The Prospective Positivity associated with realisation of delayed intentions was observed in both conceptual and perceptual tasks. A common frontal-midline brain source contributed to the Prospective Positivity in both tasks and a strong contribution from parieto-frontal brain sources was observed only for the perceptually cued PM-task. These findings support the idea that: (1) The enhanced N200 can be understood as a neural correlate of a ‘retrieval mode’ for perceptual and conceptual PM-tasks, and additional strategic monitoring is implemented according the nature of the PM task; (2) ERPs associated with cue detection are specific to the nature of the PM cues; (3) Prospective Positivity reflects a general PM process, but the specific brain sources contributing to it depend upon the nature of the PM task.
ObjectiveTime-based prospective memory (PM), remembering to do something at a particular moment in the future, is considered to depend upon self-initiated strategic monitoring, involving a retrieval mode (sustained maintenance of the intention) plus target checking (intermittent time checks). The present experiment was designed to explore what brain regions and brain activity are associated with these components of strategic monitoring in time-based PM tasks.Method24 participants were asked to reset a clock every four minutes, while performing a foreground ongoing word categorisation task. EEG activity was recorded and data were decomposed into source-resolved activity using Independent Component Analysis. Common brain regions across participants, associated with retrieval mode and target checking, were found using Measure Projection Analysis.ResultsParticipants decreased their performance on the ongoing task when concurrently performed with the time-based PM task, reflecting an active retrieval mode that relied on withdrawal of limited resources from the ongoing task. Brain activity, with its source in or near the anterior cingulate cortex (ACC), showed changes associated with an active retrieval mode including greater negative ERP deflections, decreased theta synchronization, and increased alpha suppression for events locked to the ongoing task while maintaining a time-based intention. Activity in the ACC was also associated with time-checks and found consistently across participants; however, we did not find an association with time perception processing per se.ConclusionThe involvement of the ACC in both aspects of time-based PM monitoring may be related to different functions that have been attributed to it: strategic control of attention during the retrieval mode (distributing attentional resources between the ongoing task and the time-based task) and anticipatory/decision making processing associated with clock-checks.
Declaration of conflicting interest: None declared.Funding: This research received no specific grant support from any funding agency in the public, commercial, or not-for-profit. 2 AbstractIntroduction: This study evaluated the efficacy of a low-cost reminder system to support
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.