The rise in prevalence of obesity in women of reproductive age in developed and developing countries might propagate intergenerational cycles of detrimental effects on metabolic health. Placental lipid metabolism is disrupted by maternal obesity, which possibly affects the life-long health of the offspring. Here, we investigated placental lipid metabolism in women with pre-gestational obesity as a sole pregnancy complication and compared it to placental responses of lean women. Open profile and targeted lipidomics were used to assess placental lipids and oxidised products of docosahexahenoic acid (DHA), neuroprostanes, arachidonic acid (AA), and isoprostanes. Despite no overall signs of lipid accumulation, DHA and AA levels in placentas from obese women were, respectively, 2.2 and 2.5 times higher than those from lean women. Additionally, a 2-fold increase in DHA-derived neuroprostanes and a 1.7-fold increase in AA-derived isoprostanes were seen in the obese group. These changes correlated with a 70% decrease in placental FABP1 protein. Multivariate analyses suggested that neuroprostanes and isoprostanes are associated with maternal and placental inflammation and with birth weight. These results might shed light on the molecular mechanisms associated with altered placental fatty acid metabolism in maternal pre-gestational obesity, placing these oxidised fatty acids as novel mediators of placental function.
Gestational Diabetes Mellitus (GDM) is the most common medical complication of pregnancy, and a severe threat to pregnant people and offspring health. The molecular origins of GDM, and in particular the placental responses, are not fully known. The present study aimed to perform a comprehensive characterization of the lipid species in placentas from pregnancies complicated with GDM using high-resolution mass spectrometry lipidomics, with a particular focus on sphingolipids and acylcarnitines in a semi-targeted approach. The results indicated that despite no major disruption in lipid metabolism, placentas from GDM pregnancies showed significant alterations in sphingolipids, mostly a decrease in total placental ceramides. Additionally, very long-chain ceramides and sphingomyelins with 24 carbons were decreased, and glucosylceramides with 16 carbons were higher in placentas from GDM pregnancies. Semi-targeted lipidomics revealed the strong impact of GDM on the placental acylcarnitine profile, particularly a decrease in medium and long-chain fatty-acyl carnitine species. The decrease in sphingolipids may affect the secretory function of the placenta, and the decrease in long-chain fatty acylcarnitines is suggestive of mitochondrial dysfunction. These alterations in placental lipid metabolism may have consequences for fetal growth and development.
The rise in prevalence of obesity in women of reproductive age in both developed and developing countries might propagate intergenerational cycles of detrimental effects on metabolic health, contributing to substantial economic burden on society. Placental lipid metabolism might be disrupted by maternal obesity, which possibly affects the life-long health of the offspring. Here, we investigated placental lipid metabolism and handling from women with pre-gestational obesity as a sole pregnancy complication and compared to placental responses of lean women. Open profile and targeted lipidomics were used to assess placental lipids and oxidized products of docosahexahenoic acid (DHA), neuroprostanes, and arachidonic acid (AA), isoprostanes. Placental fatty acid transporters FABP1, FABP3 and endothelial lipase protein were measured. Despite no signs of overall alterations in lipid content, increased contents of DHA, AA, DHA-derived neuroprostanes and AA-derived isoprostanes and decreased content of FABP1 protein were found in placentas from obese women. Multivariate analyses suggested that these oxidised fatty acids are associated with maternal and placental inflammation and also with birth weight. These results might shed light on the molecular mechanisms associated with altered fatty acid metabolism and lipid handling in maternal pre-gestational obesity, placing these oxidized fatty acids as novel mediators of placental function.
Brazil has the second highest COVID-19 death rate while Rio de Janeiro is among the states with the highest rate in the country. Although effective vaccines have been developed, it is anticipated that the ongoing COVID-19 pandemic will transition into an endemic state. Under this scenario, it is worrisome that the underlying molecular mechanisms associated with the disease clinical evolution from mild to severe, as well as the mechanisms leading to long COVID are not yet fully understood. In this study,1H Nuclear Magnetic Resonance spectroscopy and Liquid Chromatography-Mass spectrometry-based metabolomics were used to identify potential pathways and metabolites involved in COVID-19 pathophysiology and disease outcome. We prospectively enrolled 35 severe RT-PCR confirmed COVID-19 cases within 72 hours from intensive care unit admission, between April and July 2020 from two reference centers in Rio de Janeiro, and 12 samples from non-infected control subjects. Of the 35 samples from COVID-19 patients, 18 were from survivors and 17 from non-survivors. We observed that patients with severe COVID-19 had their plasma metabolome significantly changed if compared to control subjects. We observed lower levels of glycerophosphocholine and other choline-related metabolites, serine, glycine, and betaine, indicating a dysregulation in methyl donors and one-carbon metabolism. Importantly, non-survivors had higher levels of creatine/creatinine, 4-hydroxyproline, gluconic acid andN-acetylserine compared to survivors and controls, reflecting uncontrolled inflammation, liver and kidney dysfunction, and insulin resistance in these patients. Lipoprotein dynamics and amino acid metabolism were also altered in severe COVID-19 subjects. Several changes were greater in women, thus patient’s sex should be considered in pandemic surveillance to achieve better disease stratification and improve outcomes. The incidence of severe outcome after hospital discharge is very high in Brazil, thus these metabolic alterations may be used to monitor patients’ organs and tissues and to understand the pathophysiology of long-post COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.