Therapeutic options for infections caused by Carbapenem‐resistant Enterobacterales (CRE) are restricted and include polymyxins‐centred schemes. Evaluation of in vitro susceptibility is difficult and time consuming. Agar‐based methodologies are an alternative to broth microdilution (BMD) and we aimed to evaluate the accuracy of those methods among Enterobacterales. A total of 137 non‐duplicated CRE were subjected to polymyxin B BMD, agar screening test (Mueller Hinton plates containing 3 µg ml−1 of polymyxin B) and agar dilution (antibiotic serially diluted 0·25–64 µg ml−1). CRE of 42·3% were resistant to polymyxin B (MICs range: 0·25–>64 µg ml−1) and 16·8% presented borderline MICs. Sensitivity, specificity, PPV and NPV were 86·2, 98·7, 98 and 90·7% for screening test and 86·2, 97·5, 96·1 and 90·6% for agar dilution. ME was 0·73 and 1·5% for screening and agar dilution respectively; VME was 5·8% for both techniques. In general, agar‐based methods had a good performance. As far as we know, this is the first study to propose an agar screening test using polymyxin B instead of colistin.
Alzheimer's disease (AD) is a multifactorial pathology responsible for most cases of dementia worldwide. Only a small percentage of AD cases are due to autosomal dominant mutations, while the vast majority have a sporadic presentation. Yet, preclinical research studies relied for decades on animal models that overexpress human genes found in AD autosomal dominant patients. Thus, one could argue that these models do not recapitulate sporadic AD. To avoid human gene overexpression artifacts, knock-in (KI) models have been developed, such as the novel hAβ-KI mouse model, which are still in early phases of characterization. We hypothesize that comparisons at the transcriptomic level may elucidate critical similarities and differences between transgenic/KI models and AD patients. Thus, we aimed at comparing the hippocampal transcriptomic profiling of overexpression (5xFAD and APP/PS1) and KI (hAβ-KI) mouse models with early- (EOAD) and late- (LOAD) onset AD patients. We first evaluated differentially expressed genes (DEGs) and Gene Ontology biological processes (GOBP) overlapping cross-species. After, we explored a network-based strategy to identify master regulators (MR) and the similarities of such elements among models and AD subtypes. A multiple sclerosis (MS) dataset was included to test the molecular specificity of the mouse models to AD. Our analysis revealed that all three mouse models presented more DEGs, GOBP terms and enriched signaling pathways in common with LOAD than with EOAD subjects. Furthermore, semantic similarity of enriched GOBP terms showed mouse model-specific biological alterations, and protein-protein interaction analysis of DEGs identified clusters of genes exclusively shared between hAβ-KI mice and LOAD. Furthermore, we identified 17 transcription factor candidates potentially acting as MR of AD in all three models. Finally, though all mouse models showed transcriptomic similarities to LOAD, hAβ-KI mice presented a remarkable specificity to this AD subtype, which might support the use of the novel hAβ-KI mouse model to advance our understanding of sporadic LOAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.