Background: Effective cancer treatment still challenges medicine since the strategies employed so far are not sufficiently safe and capable of specifically eliminating tumor cells. Prostate cancer (PCa) is a highly incident malignant neoplasm, and the outcome of patients, especially those with advanced castration-resistant PCa (CRPC), depends directly on the efficacy of the therapeutic agents, such as docetaxel (DOC). background: Effective cancer treatment still challenges medicine, since the strategies employed so far are not sufficiently safe and capable of specifically eliminating tumor cells. Prostate cancer (PCa) is a highly incident malignant neoplasm and the outcome of patients, especially those with advanced castration resistant PCa (CRPC), depends directly on the efficacy of the therapeutic agents, such as DOC. Objective: This study investigated the synergistic potentiation of 4-nerolidylcatechol (4-NC) with DOC in inhibiting androgen-independent PCa cells. objective: This study investigates 4-nerolidylcatechol (4-NC)’s synergistic potentiation with DOC in inhibiting androgen-independent PCa cells. Methods: The cytotoxic effect of 4-NC was evaluated against non-tumorigenic (RWPE-01) and PCa cell lines (LNCaP and PC-3), and the antiproliferative potential of 4-NC was assessed by flow cytometry and colony formation. The Chou-Talalay method was applied to detect the synergistic effect of 4-NC and DOC, and the mechanism of anticancer activities of this combination was investigated by analyzing players in epithelial-mesenchymal transition (EMT). method: The cytotoxic effect of 4-NC was evaluated against non-tumorigenic (RWPE-01) and PCa cell lines (LNCaP and PC-3), and the antiproliferative potential of 4-NC was assessed by flow cytometry and colony formation. The Chou-Talalay method was applied to detect the synergistic effect of 4-NC and DOC, and the mechanism of anticancer activities of this combination was investigated by analyzing players in epithelial-mesenchymal transition (EMT). Results: 4-NC significantly reduced the viability of PC-3 cells in a dose-dependent manner, decreasing colony formation and proliferation. The combination of 4-NC and DOC was synergistic in the androgen-independent cells and allowed the reduction of DOC concentration, with increased cytotoxicity and induction of apoptosis when compared to compounds alone. Furthermore, when 4-NC was co-administered with DOC, higher expression levels of proteins associated with the epithelial phenotype were observed, controlling EMT in PC-3 cells. Conclusion: Collectively, these data demonstrated, for the first time, that the combination of 4-NC with reduced doses of DOC could be especially valuable in the suppression of oncogenic mechanisms of androgen-independent PCa cells. other: Our results pave the way for new therapeutic strategies to be incorporated in the treatment of PCa.
Nitrogen accumulation in hydroponically-grown lettuce may pose a health risk to consumers. Thus, the objective of this study was to analyze different concentrations of nitrogen applications in hydroponic lettuce cultivation and their effect on toxicity, cytotoxicity and genotoxicity. A nutrient film technique (NFT) hydroponic system was used to grow the lettuce variety “Vanda.” The treatments consisted of different concentrations of nitrogen (in the form of calcium nitrate) in Furlani solution (75, 100, 125 and 150%), a negative and a positive control. The following commercial characteristics were measured: plant fresh weight (PFW), root fresh weight (RFW), shoot fresh weight (SFW), shoot diameter (SD), root dry weight (RDW), shoot dry weight (SDW) and leaf nitrogen (LN). Cytogenotoxicity was indicated by toxicity, cytotoxicity and genotoxicity, which were in turn determined by root length, the mitotic index, chromosomal aberrations and the presence of micronuclei. The nitrogen concentrations used in this experiment did not cause phenotypic toxicity or cytotoxicity in lettuce roots. The most severe genotoxicity was observed at the 125% nitrogen concentration, which nevertheless did not affect commercial characteristics. Although nitrogen fertilization provides great benefits to agriculture, such as greater yields, indiscriminate use should be avoided since concentrations above recommended rates may induce genotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.