BackgroundSpecification of primordial germ cells (PGCs) results in the conversion of pluripotent epiblast cells into monopotent germ cell lineage. Blimp1/Prmt5 complex plays a critical role in the specification and maintenance of the early germ cell lineage. However, PGCs can be induced to dedifferentiate back to a pluripotent state as embryonic germ (EG) cells when exposed to exogenous signaling molecules, FGF-2, LIF and SCF.Methodology and Principal FindingsHere we show that Trichostatin A (TSA), an inhibitor of histone deacetylases, is a highly potent agent that can replace FGF-2 to induce dedifferentiation of PGCs into EG cells. A key early event during dedifferentiation of PGCs in response to FGF-2 or TSA is the down-regulation of Blimp1, which reverses and apparently relieves the cell fate restriction imposed by it. Notably, the targets of Blimp1, which include c-Myc and Klf-4, which represent two of the key factors known to promote reprogramming of somatic cells to pluripotent state, are up-regulated. We also found early activation of the LIF/Stat-3 signaling pathway with the translocation of Stat-3 into the nucleus. By contrast, while Prmt5 is retained in EG cells, it translocates from the nucleus to the cytoplasm where it probably has an independent role in regulating pluripotency.Conclusions/SignificanceWe propose that dedifferentiation of PGCs into EG cells may provide significant mechanistic insights on early events associated with reprogramming of committed cells to a pluripotent state.
The germ cell lineage is a specified cell population that passes through a series of differentiation steps before giving rise, eventually, to either eggs or sperm. We have investigated the manner in which primordial germ cells (
The developmental potential of bovine fetal fibroblasts was evaluated using nuclear transfer. Fibroblasts from a 37-day-old fetus were fused to enucleated oocytes before activation. Nuclei of starved (cultured for 8 days in medium containing 0.5% serum) fibroblasts supported the development of reconstructed embryos to the blastocyst stage significantly better than those of non-starved fibroblasts (39% versus 20%; P < 0.05). When nuclear transfer morulae derived from starved or non-starved fibroblasts were used for re-cloning, the proportion of blastocysts (52 and 55%, respectively) obtained with these embryonic nuclei was significantly higher than it was with fibroblast nuclei used in the first round of nuclear transfer (P < 0.05 and P < 0.001, respectively). After transfer of blastocysts derived from non-starved and starved fibroblasts, respectively, 33% (1/3) and 78% (7/9) of recipients were pregnant on day 30 as assessed by ultrasonography. On day 90, the corresponding pregnancy rates were 33% (1/3) and 63% (5/8). Two live male twin calves, derived from non-starved fibroblasts, were delivered by Caesarean section at day 281 of gestation. This study demonstrates a positive effect of serum starvation on the efficiency of nuclear transfer using bovine fetal fibroblasts. The efficiency of nuclear transfer could be further increased by recloning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.