The condition known as 5q spinal muscular atrophy (SMA) is a devastating autosomal recessive neuromuscular disease caused by a deficiency of the ubiquitous protein survival of motor neuron (SMN), which is encoded by the SMN1 and SMN2 genes. It is one of the most common pediatric recessive genetic diseases, and it represents the most common cause of hereditary infant mortality. After decades of intensive basic and clinical research efforts, and improvements in the standard of care, successful therapeutic milestones have been developed, delaying the progression of 5q SMA and increasing patient survival. At the same time, promising data from early-stage clinical trials have indicated that additional therapeutic options are likely to emerge in the near future. Here, we provide updated information on the molecular underpinnings of SMA; we also provide an overview of the rapidly evolving therapeutic landscape for SMA, including SMN-targeted therapies, SMN-independent therapies, and combinational therapies that are likely to be key for the development of treatments that are effective across a patient’s lifespan.
Many primary-tumor subregions exhibit low levels of molecular oxygen and restricted access to nutrients due to poor vascularization in the tissue, phenomenon known as hypoxia. Hypoxic tumors are able to regulate the expression of certain genes and signaling molecules in the microenvironment that shift it towards a more aggressive phenotype. The transcriptional landscape of the tumor favors malignant transformation of neighboring cells and their migration to distant sites. Herein, we focused on identifying key proteins that participate in the signaling crossroads between hypoxic environment and metastasis progression that remain poorly defined. To shed light on these mechanisms, we performed an integrated multi-omics analysis encompassing genomic/transcriptomic alterations of hypoxia-related genes and Buffa hypoxia scores across 17 pancarcinomas taken from the PanCancer Atlas project from The Cancer Genome Atlas consortium, protein–protein interactome network, shortest paths from hypoxia-related proteins to metastatic and angiogenic phenotypes, and drugs involved in current clinical trials to treat the metastatic disease. As results, we identified 30 hypoxia-related proteins highly involved in metastasis and angiogenesis. This set of proteins, validated with the MSK-MET Project, could represent key targets for developing therapies. The upregulation of mRNA was the most prevalent alteration in all cancer types. The highest frequencies of genomic/transcriptomic alterations and hypoxia score belonged to tumor stage 4 and positive metastatic status in all pancarcinomas. The most significantly associated signaling pathways were HIF-1, PI3K-Akt, thyroid hormone, ErbB, FoxO, mTOR, insulin, MAPK, Ras, AMPK, and VEGF. The interactome network revealed high-confidence interactions among hypoxic and metastatic proteins. The analysis of shortest paths revealed several ways to spread metastasis and angiogenesis from hypoxic proteins. Lastly, we identified 23 drugs enrolled in clinical trials focused on metastatic disease treatment. Six of them were involved in advanced-stage clinical trials: aflibercept, bevacizumab, cetuximab, erlotinib, ipatasertib, and panitumumab.
Background: It is imperative to identify drugs that allow treating symptoms of severe COVID-19. Respiratory failure is the main cause of death in severe COVID-19 patients, and the host inflammatory response at the lungs remains poorly understood.Methods: Therefore, we retrieved data from post-mortem lungs from COVID-19 patients and performed in-depth in silico analyses of single-nucleus RNA sequencing data, inflammatory protein interactome network, and shortest pathways to physiological phenotypes to reveal potential therapeutic targets and drugs in advanced-stage COVID-19 clinical trials.Results: Herein, we analyzed transcriptomics data of 719 inflammatory response genes across 19 cell types (116,313 nuclei) from lung autopsies. The functional enrichment analysis of the 233 significantly expressed genes showed that the most relevant biological annotations were inflammatory response, innate immune response, cytokine production, interferon production, macrophage activation, blood coagulation, NLRP3 inflammasome complex, and the TLR, JAK-STAT, NF-κB, TNF, oncostatin M signaling pathways. Subsequently, we identified 34 essential inflammatory proteins with both high-confidence protein interactions and shortest pathways to inflammation, cell death, glycolysis, and angiogenesis.Conclusion: We propose three small molecules (baricitinib, eritoran, and montelukast) that can be considered for treating severe COVID-19 symptoms after being thoroughly evaluated in COVID-19 clinical trials.
Background: Detection of chromosomal abnormalities is crucial in various medical areas; to diagnose birth defects, genetic disorders, and infertility, among other complex phenotypes, in individuals across a wide range of ages. Hence, the present study wants to contribute to the knowledge of type and frequency of chromosomal alterations and polymorphisms in Ecuador. Methods: Cytogenetic registers from different Ecuadorian provinces have been merged and analyzed to construct an open-access national registry of chromosome alterations and polymorphisms. Results: Of 28,806 karyotypes analyzed, 6,008 (20.9%) exhibited alterations. Down syndrome was the most frequent autosome alteration (88.28%), followed by Turner syndrome (60.50%), a gonosome aneuploidy. A recurrent high percentage of Down syndrome mosaicism (7.45%) reported here, as well as by previous Ecuadorian preliminary registries, could be associated with geographic location and admixed ancestral composition. Translocations (2.46%) and polymorphisms (7.84%) were not as numerous as autosomopathies (64.33%) and gonosomopathies (25.37%).Complementary to conventional cytogenetics tests, molecular tools have allowed
Breast cancer (BC) is the leading cause of cancer-related death among women. BC is a heterogeneous disease differing in genomic complexity, key genetic alterations, and clinical prognosis. Given the description of the Ecuadorian population as multiethnic, made up of African, Native American, and European groups, this research is an initial evaluation of the potential benefits that would be obtained by generating a haplotype map of the Ecuadorian population to improve precision medicine. The aim was to estimate the original proportion of each inferred population and to determine the underlying population in women affected with BC. The ancestral proportion among Africans, Europeans, and Native Americans in Ecuadorian women was calculated through 45 ancestry informative markers (AIMs) and the comparison to the Human Genome Diversity Project panel. The resulting allele frequencies in affected women indicated prevalence of the Native American ancestral component with 60.58%, and minor proportion for the European and African components with 34.57% and 3.7%, respectively. These results suggest that the genetic variations expressing BC in Ecuadorian women could have been caused by the insertion of certain genetic characteristics of the Native American groups as consequence of ancestral migration towards South America.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.