To fully understand the biological and environmental impacts of nanomaterials requires studies which address both sub-lethal endpoints and multigenerational effects. Here we use a nematode to examine these issues as they relate to exposure to two different types of quantum dots, core (CdSe) and core-shell (CdSe/ZnS), and to compare the effect to those observed after cadmium salt exposures. The strong fluorescence of the core-shell QDs allowed for the direct visualization of the materials in the digestive track within a few hours of exposure. Multiple endpoints, including both developmental and locomotive, were examined at QD exposures of low (10 mg/L Cd), medium (50 mg/L Cd), and high concentrations (100 mg/L Cd). While the core-shell QDs showed no effect on fitness (lifespan, fertility, growth, and three parameters of motility behavior), the core QDs caused acute effects similar to those found for cadmium salts suggesting that biological effects may be attributed to cadmium leaching from the more soluble QDs. Over multiple generations, we commonly found that for lower life-cycle exposures to core QDs the parents response was generally a poor predictor of the effects on progeny. At the highest concentrations, however, biological effects found for the first generation were commonly similar in magnitude to those found in future generations.
The increased bioavailability of nanoparticles engineered for good dispersion in water may have biological and environmental impacts. To examine this issue, the authors assessed the biological effects in nematodes as they relate to exposure to silver nanoparticles (AgNPs) of different sizes at low (1 mg/L Ag), medium (10 mg/L Ag), and high concentrations (100 mg/L Ag). Over multiple generations, the authors found that the smallest particle, at 2 nm, had a notable impact on nematode fertility. In contrast, the largest particle, at 10 nm, significantly reduced the lifespan of parent nematodes (P0) by 28.8% and over the span of 3 generations (F1–F3). In addition, a computer vision system automatically measured the adverse effects in body length and motility, which were not size-dependent.
Nanotechnology has already contributed significantly to advances in several industries, e.g. electronics, biomedical, aerospace, and more recently the energy industries. In particular, nanotechnology has the potential to pioneer changes in several areas of the oil and gas industry, such as exploration, drilling, production, enhanced-oil-recovery (EOR), and refining. For example, superparamagnetic nanoparticles that could act as contrast agents could be used to accurately determine the oil saturation distribution in a reservoir and help determine bypassed oils. Moreover, by correctly functionalizing the surface of the magnetic nanoparticles, colloidal suspensions of these nanoparticles that are stable at high temperatures and high salinities (oil-well conditions) can be prepared and could be co-injected with sweep and/or fracture fluids and their location determined and tracked over time by electromagnetic measurements. With this in mind, a study of the magnetic properties of ferrite nanoparticles with varying compositions (MFe2O4; M = Fe, Al) has been conducted to determine the magnetic responses of the various particles in order to evaluate the likelihood of using them as magnetic contrast agents in the oil and gas industry.
The presence of arsenic in groundwater and other drinking water sources presents a notable public health concern. Although the utilization of iron oxide nanomaterials as arsenic adsorbents has shown promising results in batch experiments, few have succeeded in using nanomaterials in filter setups. In this study, the performance of nanomaterials, supported on sand, was first compared for arsenic adsorption by conducting continuous flow experiments. Iron oxide nanoparticles (IONPs) were prepared with different synthetic methodologies to control the degree of agglomeration. IONPs were prepared by thermal decomposition or coprecipitation and compared with commercially available IONPs. Electron microscopy was used to characterize the degree of agglomeration of the pristine materials after deposition onto the sand. The column experiments showed that IONPs that presented less agglomeration and were well dispersed over the sand had a tendency to be released during water treatment. To overcome this implementation challenge, we proposed the use of clusters of iron oxide nanoparticles (cIONPs), synthesized by a solvothermal methodology, which was explored. An isotherm experiment was also conducted to determine the arsenic adsorption capacities of the iron oxide nanomaterials. cIONPs showed higher adsorption capacities (121.4 mg/g) than the other IONPs (11.1, 6.6, and 0.6 mg/g for thermal decomposition, coprecipitation, and commercially available IONPs, respectively), without the implementation issues presented by IONPs. Our results show that the use of clusters of nanoparticles of other compositions opens up the possibilities for multiple water remediation applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.