O Brasil tem um grande potencial apícola, por possuir flora bastante diversificada, vasta extensão territorial e variabilidade climática, o que possibilita produzir mel o ano todo, e o diferencia dos demais países que normalmente colhem mel uma vez por ano (Marchini et al., 2001).No campo, o controle da qualidade deve iniciar no manejo das colméias, indo desde a escolha do local do apiário até a extração na casa do mel. A composição do mel depende, basicamente, dos componentes do néctar da espécie vegetal produtora que conferem ao produto características específicas. Já a influência das condições climáticas e do manjeo do apicultor é menor, embora exerçam efeito sobre as características físico-químicas do produto (Marchini et al., 2001). Após a colheita, o mel continua sofrendo modificações físico-químicas, microbiológicas e sensoriais. Isto gera a necessidade de produzi-lo dentro de padrões elevados de qualidade, controlando todas as etapas do seu processamento, afim de que se possa garantir um produto de qualidade (Araújo et al., 2006). As análises físico-químicas exercem papel importante na fiscalização de méis importados e no controle da qualidade do mel produzido internamente. Os resultados são comparados com os padrões oficiais internacionais e com os estabelecidos pelo próprio País, com a finalidade Recebido em 22 de outubro de 2010 Aceito em 8 de junho de 2011
Brazil stands out worldwide in the production of coffee. The observed increases in its productivity and morpho agronomic traits are the results of the improvement of several methodologies applied in obtaining improved cultivars, among which the predictive methods of genetic value stand out. These contribute significantly to the selection of higher genotypes, increasing the genetic gain per unit time. In this context, genomic-wide selection (GWS) is a tool that stands out, since it allows predicting the future phenotype of an individual based only on molecular information. Performing joint selection of traits is the interest of most breeding programs, and factor analysis (FA) has been used to assist in this end. The aim of this study was to evaluate the use of FA in the context of GWS, in genotypes of Coffea canephora . It was found that FA was efficient to elucidate the relationships between the traits and generate new variables. The factors formed can assist in the selection, as in addition to allowing joint interpretations, they present good estimates of predictive capacity, heritability and accuracy. Furthermore, high agreement was observed between the individuals selected based on the factors and those selected considering the individual traits. Additionally, it was observed agreement between the top 10% individuals selected based on the “vigor factor” and each variable individually. However, the selection based on “vigor factor” presented individuals with more suitable size from the phytotechnical point of view.
This study assessed the efficiency of Genomic selection (GS) or genome‐wide selection (GWS), based on Regularized Quantile Regression (RQR), in the selection of genotypes to breed autogamous plant populations with oligogenic traits. To this end, simulated data of an F2 population were used, with traits with different heritability levels (0.10, 0.20 and 0.40), controlled by four genes. The generations were advanced (up to F6) at two selection intensities (10% and 20%). The genomic genetic value was computed by RQR for different quantiles (0.10, 0.50 and 0.90), and by the traditional GWS methods, specifically RR-BLUP and BLASSO. A second objective was to find the statistical methodology that allows the fastest fixation of favorable alleles. In general, the results of the RQR model were better than or equal to those of traditional GWS methodologies, achieving the fixation of favorable alleles in most of the evaluated scenarios. At a heritability level of 0.40 and a selection intensity of 10%, RQR (0.50) was the only methodology that fixed the alleles quickly, i.e., in the fourth generation. Thus, it was concluded that the application of RQR in plant breeding, to simulated autogamous plant populations with oligogenic traits, could reduce time and consequently costs, due to the reduction of selfing generations to fix alleles in the evaluated scenarios.
The aim of this study was to evaluate the performance of Quantile Regression (QR) in Genome-Wide Association Studies (GWAS) regarding the ability to detect QTLs (Quantitative Trait Locus) associated with phenotypic traits of interest, considering different population sizes. For this, simulated data was used, with traits of different levels of heritability (0.30 and 0.50), and controlled by 3 and 100 QTLs. Populations of 1,000 to 200 individuals were defined, with a random reduction of 100 individuals for each population. The power of detection of QTLs and the false positive rate were obtained by means of QR considering three different quantiles (0.10, 0.50 and 0.90) and also by means of the General Linear Model (GLM). In general, it was observed that the QR models showed greater power of detection of QTLs in all scenarios evaluated and a relatively low false positive rate in scenarios with a greater number of individuals. The models with the highest detection power of true QTLs at the extreme quantils (0.10 and 0.90) were the ones with the highest detection power of true QTLs. In contrast, the analysis based on the GLM detected few (scenarios with larger population size) or no QTLs in the evaluated scenarios. In the scenarios with low heritability, QR obtained a high detection power. Thus, it was verified that the use of QR in GWAS is effective, allowing the detection of QTLs associated with traits of interest even in scenarios with few genotyped and phenotyped individuals.
In forest genetic improvement programs for non-domesticated species, limited knowledge of kinship can compromise or make the estimation of variance components and genetic parameters of traits of interest unfeasible. We used mixed models and genomics (in the latter, considering additive and non-additive effects) to evaluate the genetic architecture of 12 traits in juçaizeiro for fruit production. A population of 275 genotypes without genetic relationship knowledge was phenotyped over three years and genotyped by whole genome SNP markers. We have verified superiority in the quality of the fits, the prediction accuracy for unbalanced data, and the possibility of unfolding the genetic effects into their additive and non-additive terms in the genomic models. Estimates of the variance components and genetic parameters obtained by the additive models may be overestimated since, when considering the dominance effect in the model, there are substantial reductions in them. The number of bunches, fresh fruit mass of bunch, rachis length, fresh mass of 25 fruits, and amount of pulp were strongly influenced by the dominance effect, showing that genomic models with such effect should be considered for these traits, which may result in selective improvements by being able to return more accurate genomic breeding values. The present study reveals the additive and non-additive genetic control of the evaluated traits and highlights the importance of genomic information-based approaches for populations without knowledge of kinship and experimental design. Our findings underscore the critical role of genomic data in elucidating the genetic control architecture of quantitative traits, thereby providing crucial insights for driving species' genetic improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.