Mucoadhesive membranes were proposed in this study as drug delivery system for betamethasone-17-valerate (BMV) in the treatment of recurrent aphthous stomatitis (RAS). The membranes were obtained by using the polymers chitosan (CHI) in both presence and absence of polyvinilpyrrolidone (PVP), following the solvent evaporation method. The presence of PVP in the membranes causes significant modifications in its thermal properties. Changes in the thermal events at 114 and 193 °C (related to BMV melting point), and losses in mass (39.38 and 30.68% for CH:PVP and CH:PVP-B, respectively), suggests the incorporation of BMV in these membranes. However, the morphological aspects of the membranes do not change after adding PVP and BMV. PVP causes changes in swelling ratios (>80%) of the membranes, and it is suggested that the reorganization of the polymer mesh was highlighted by the chemical interactions between the polymers leading to different percentages of BMV released ∼40% and ∼80% from CH-B and CH:PVP-B. BMV release profile follows Korsmeyer and Peppas model (n > 0.89) which suggests that the diffusion of the drug in the swollen matrix is driven by polymer relaxation. In addition, the membranes containing PVP (higher swelling ability) present high rates of tensile strength, and therefore, higher mucoadhesion. Moreover, given the results presented, the developed mucoadhesive membranes are a promising system to deliver BMV for the treatment of RAS.
The aim of this work was to evaluate the effect of Ouratea sp. butter (OB) on crystallinity of solid lipids used in nanostructured lipid carriers systems. Firstly, the composition of fatty acids in OB was evaluated by transesterification reaction for gas chromatography fatty acid methyl ester analysis. The solid lipids such as stearic acid (SA), beeswax (BW) and carnauba wax (CW) were submitted to recrystallization process (heating-cooling). Moreover, binary mixtures between solid lipids and OB were prepared in ratio 1:1 (w/w) by heating of the components above the melting point followed by cooling at room temperature. Thus, the samples were characterized by differential scanning calorimetry (DSC), thermogravimetry (TG), X ray diffraction (XRD) and hot-stage polarized optical microscopy (HSPOM). DSC curves showed a shift of the melting point to lower temperatures in the lipid mixtures with OB. TG data suggested a thermal stability reduction in the lipid mixtures containing SA and CW and an increase thermal stability in the mixture containing BW. XRD data confirmed DSC results, showing a reduction in intensity of main diffraction peaks of the lipid mixtures and a presence of the amorphous portion in angle 2h: 22°. Finally, HSPOM demonstrated that the microstructures of solid lipids decreased in size and thickness in the mixtures containing OB at room temperature and slightly before the melting point, confirming previous characterizations. These results suggest that lipid mixtures with OB present a lower crystallinity, and it is expected that amorphous portion facilitates drug incorporation, for example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.