Aging is associated with morphological, physiological and metabolic changes, leading to multiorgan degenerative pathologies, such as cognitive function decline. It has been suggested that memory loss also involves a decrease in neurotrophic factors, including brain-derived neurotrophic factor (BDNF). In recent years, microbiota has been proposed as an essential player in brain development, as it is believed to activate BDNF secretion through butyrate production. Thus, microbiota modulation by supplementation with probiotics and prebiotics may impact cognitive decline. This study aimed to evaluate the effects of probiotics and prebiotics supplementation on the memory of middle-aged rats. Sprague-Dawley male rats were randomized in four groups (n = 13 per group): control (water), probiotic (E. faecium), prebiotic (agave inulin), symbiotic (E. faecium + inulin), which were administered for 5 weeks by oral gavage. Spatial and associative memory was analyzed using the Morris Water Maze (MWM) and Pavlovian autoshaping tests, respectively. Hippocampus was obtained to analyze cytokines [interleukin (IL-1β) and tumor necrosis factor (TNF-α)], BDNF and γ-aminobutyric acid (GABA) by enzyme-linked immunosorbent assay (ELISA). Butyrate concentrations were also evaluated in feces. The symbiotic group showed a significantly better performance in MWM (p < 0.01), but not in Pavlovian autoshaping test. It also showed significantly lower concentrations of pro-inflammatory cytokines (p < 0.01) and the reduction in IL-1β correlated with a better performance of the symbiotic group in MWM (p < 0.05). Symbiotic group also showed the highest BDNF and butyrate levels (p < 0.0001). Finally, we compared the electrophysiological responses of control (n = 8) and symbiotic (n = 8) groups. Passive properties of CA1 pyramidal cells (PCs) exhibited changes in response to the symbiotic treatment. Likewise, this group showed an increase in the N-methyl-D-aspartate receptor (NMDA)/AMPA ratio and exhibited robust long-term potentiation (LTP; p < 0.01). Integrated results suggest that symbiotics could improve age-related impaired memory.
Sarcopenia is a notable and debilitating age-associated condition. Flavonoids are known for their healthy effects and limited toxicity. The flavanol (−)-epicatechin (Epi) enhances exercise capacity in mice and Epi-rich cocoa improves skeletal muscle structure in heart failure patients. (−)-Epicatechin may thus, hold promise as treatment for sarcopenia. We examined changes in protein levels of molecular modulators of growth and differentiation in young vs. old, human and mouse skeletal muscle. We report the effects of Epi in mice and the results of an initial proof-of-concept trial in humans, where muscle strength and levels of modulators of muscle growth were measured. In mice, myostatin and senescence-associated β-galactosidase levels increase with aging, while those of follistatin and Myf5 decrease. (−)-Epicatechin decreases myostatin and β-galactosidase and increases levels of markers of muscle growth. In humans, myostatin and β-galactosidase increase with aging while follistatin, MyoD and myogenin decrease. Treatment for 7 days with (−)-epicatechin increases hand grip strength and the ratio of plasma follistatin/myostatin. In conclusion, aging has deleterious effects on modulators of muscle growth/differentiation, the consumption of modest amounts of the flavanol (−)-epicatechin can partially reverse these changes. This flavanol warrants its comprehensive evaluation for the treatment of sarcopenia
Obesity and its associated cardiometabolic alterations currently are considered an epidemic; thus, their treatment is of major importance. The cornerstone for such treatment involves therapeutic lifestyle changes; however, the vast majority of cases fail and/or significant weight loss is maintained only in the short term because of lack of compliance. The popularity of dietary supplements for weight management has increased, and a wide variety of these products are available over the counter. However, the existing scientific evidence is insufficient to recommend their safe use. Hence, the purpose of this article is to review the clinical effects, proposed mechanism of action, and safety profile of some of the new dietary supplements, including white bean extract, Garcinia cambogia, bitter orange, Hoodia gordonii, forskolin, green coffee, glucomannan, β-glucans, chitosan, guar gum, and raspberry ketones.
Postprandial hyperglycemia, in particular when accompanied by excessive hypertriglyceridemia, is associated with increased cardiovascular risk, mainly in overweight or obese subjects, as it favors oxidative stress, systemic inflammation and endothelial dysfunction. Thus, treatments that favorably modulate metabolism by reducing steep increases in postprandial serum glucose and triglycerides, are of considerable interest. Evidence suggests that (−)-epicatechin (EPI) is responsible for reductions in cardiometabolic risk associated with chocolate consumption these effects may be associated with favorable effects of EPI on postprandial metabolism. The aims of this study were to assess the effects of EPI on postprandial metabolism in normal-weight and overweight/obese subjects. Twenty adult volunteers (normal and overweight) underwent oral metabolic tolerance tests in the absence and presence of oral EPI (1 mg/kg). Metabolic responses were examined using indirect calorimetry and determining blood glucose and triglycerides at 0, 2 and 4 hours after metabolic load ingestion. Results show that EPI increased postprandial lipid catabolism, as evidenced by a significant decrease in the respiratory quotient, which implies an increase in fat oxidation. The effect was associated with significantly lower postprandial plasma glucose and triglycerides concentrations. The effects were more prominent in overweight subjects. In conclusion, EPI modulates postprandial metabolism by enhancing lipid oxidation accompanied by reductions in glycemia and triglyceridemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.