Homeodomains are a class of helix–turn–helix DNA‐binding protein motifs that play an important role in the control of cellular development in eukaryotes. They fold in a three α‐helix structural module, where the third helix is the recognition helix that fits into the major groove of DNA. Structural analysis of the members of the homeodomain family led to the identification of interactions likely to stabilize the protein domains. Linking the helices pairwise, three salt bridges were found to be well preserved within the family. Also well conserved were two cation–π interactions between aromatic and positively charged side chains. To analyze the structural role of the salt bridges, molecular dynamics simulations (MD) were carried out on the wild‐type homeodomain from the Drosophila paired protein (1fjl) and on three mutants, which lack one or two salt bridges and mimic natural mutations in other homeodomains. Analysis of the trajectories revealed only small structural rearrangements of the three helices in all MD simulations, thereby suggesting that the salt bridges have no essential stabilizing role at room temperature, but rather might be important for improving thermostability. The latter hypothesis is supported by a good correlation between the melting midpoint temperatures of several homeodomains and the number of salt bridges and cation–π interactions that connect secondary structures. © 2001 John Wiley & Sons, Inc. Biopolymers 59: 145–159, 2001
Homeodomains are a class of helix-turn-helix DNA-binding protein motifs that play an important role in the control of cellular development in eukaryotes. They fold in a three alpha-helix structural module, where the third helix is the recognition helix that fits into the major groove of DNA. Structural analysis of the members of the homeodomain family led to the identification of interactions likely to stabilize the protein domains. Linking the helices pairwise, three salt bridges were found to be well preserved within the family. Also well conserved were two cation-pi interactions between aromatic and positively charged side chains. To analyze the structural role of the salt bridges, molecular dynamics simulations (MD) were carried out on the wild-type homeodomain from the Drosophila paired protein (1fjl) and on three mutants, which lack one or two salt bridges and mimic natural mutations in other homeodomains. Analysis of the trajectories revealed only small structural rearrangements of the three helices in all MD simulations, thereby suggesting that the salt bridges have no essential stabilizing role at room temperature, but rather might be important for improving thermostability. The latter hypothesis is supported by a good correlation between the melting midpoint temperatures of several homeodomains and the number of salt bridges and cation-pi interactions that connect secondary structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.