In view of recent serious adverse events and advances in gene therapy technologies, the use of regulatable expression systems is becoming recognized as indispensable adjuncts to successful clinical gene therapy. In the present work we optimized high-capacity adenoviral (HC-Ad) vectors encoding the novel tetracycline-dependent (TetOn)-regulatory elements for efficient and regulatable gene expression in the rat brain in vivo. We constructed two HC-Ad vectors encoding -galactosidase (-gal) driven by a TetOn system containing the rtTAS s M2 transactivator and the tTS Kid repressor under the control of the murine cytomegalovirus (mCMV) (HC-Ad-mTetON--Gal) or the human CMV (hCMV) promoter (HC-Ad-hTetON--Gal). Expression was tightly regulatable by doxycycline (Dox), reaching maximum expression in vivo at 6 days and returning to basal levels at 10 days following the addition or removal of Dox, respectively. Both vectors achieved higher transgene expression levels compared to the expression from vectors encoding the constitutive mCMV or hCMV promoter. HC-Ad-mTetON--Gal yielded the highest transgene expression levels and expressed in both neurons and astrocytes. Antivector immune responses continue to limit the clinical use of vectors. We thus tested the inducibility and longevity of HC-Ad-mediated transgene expression in the brain of rats immunized against adenovirus by prior intradermal injections of RAds. Regulated transgene expression from HC-Ad-mTetON--Gal remained active even in the presence of a significant systemic immune response. Therefore, these vectors display two coveted characteristics of clinically useful vectors, namely their regulation and effectiveness even in the presence of prior immunization against adenovirus.The capacity to tightly and effectively turn "on" or switch "off" the expression of a therapeutic gene is critical to achieve successful short-and long-term therapeutic benefits in clinical gene therapy. An inducible system will allow the turning "off" of the therapeutic gene during disease remission or if toxic side effects arise. It will also allow the gene to be turned "on" during exacerbation periods of the disease. Four main regulatory systems are currently available and include the tetracycline-, the progesterone antagonist RU486 (9, 61)-, the insect hormone ecdysone (24)-, and the rapamycin (FK506)-dependent systems (17, 42). We have chosen to use the tetracycline (Tet)-dependent inducible system for transgene expression regulation in the central nervous system (CNS), since the inducers are nontoxic, cross the blood-brain barrier, and provide tight regulation within adenovirus (19,21,22,40,47,48,62).The original tetracycline (Tet)-regulated system is constitutively active, but in the presence of the tetracycline analog, doxycycline (Dox), gene expression is switched "off" and therefore is known as the "tet off" variant (20,27). A mutant tetracycline-dependent transactivator (rtTA) was found to become active only in the presence of Dox (15). The rtTA system is thus called "TetOn," si...
TNF-alpha is involved in the regulation of normal tissue homeostasis affecting cell proliferation, differentiation, and death. We previously reported that TNF-alpha reduces anterior pituitary cell proliferation and PRL release in an estrogen-dependent manner. In the present project we studied the induction of apoptosis by TNF-alpha in anterior pituitary cells from female rats. TNF-alpha (50 ng/ml) decreased the viability of anterior pituitary cells. Incubation with TNF-alpha for 24 h increased the percentage of terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling-positive cells. TNF-alpha increased the percentage of somatotropes and lactotropes with apoptotic nuclear morphology without affecting the proportion of apoptotic corticotropes or gonadotropes. TNF-alpha increased the percentage of apoptotic lactotropes in cultured cells from rats killed in proestrus and estrus, but not in diestrus. This effect was significantly higher in cells from rats in proestrus than in estrus. In anterior pituitary cells from ovariectomized rats, TNF-alpha significantly increased the percentage of apoptotic lactotropes only when the cells were incubated in the presence of 17beta-estradiol. These results indicate that TNF-alpha induces apoptosis in somatotropes and lactotropes from female rats. The apoptotic effect of TNF-alpha on lactotropes is dependent on estrogens and could be involved in the regulation of anterior pituitary cell renewal during the estrous cycle.
The Fas/FasL system provides the major apoptotic mechanism for many cell types, participating in cell turnover in hormone-dependent tissues. In the present study, we localized both Fas and FasL in anterior pituitary cells, mainly in lactotropes and somatotropes. The percentage of anterior pituitary cells showing immunoreactivity for Fas or FasL was higher in cells from rats killed in proestrus than in diestrus. Also, the proportion of pituitary cells from ovariectomized (OVX) rats expressing Fas or FasL increased in the presence of 17beta-estradiol (10(-9) M). This steroid increased the percentage of lactotropes with immunoreactivity for Fas or FasL and the percentage of somatotropes expressing Fas. Activation of Fas by an agonist anti-Fas antibody (Mab-Fas) decreased the vi-ability-3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT assay)-of anterior pituitary cells from OVX rats cultured in the presence of 17beta-estradiol. Also, membrane-bound FasL decreased cell viability-[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay (MTS assay)-only when anterior pituitary cells from OVX rats were incubated with 17beta-estradiol. Moreover, FasL increased the percentage of hypodiploid anterior pituitary cells (flow cytometry). Mab-Fas increased the percentage of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL)-positive pituitary cells and lactotropes from OVX rats only when cells were incubated in the presence of 17beta-estradiol. Also, Mab-Fas triggered apoptosis of anterior pituitary cells from rats killed at proestrus but not at diestrus. Our results show that 17beta-estradiol up-regulates the expression of the Fas/FasL system in anterior pituitary cells and increases Fas-induced apoptosis in lactotropes, suggesting that Fas-induced apoptosis could be involved in the pituitary cell renewal during the estrous cycle.
It is now accepted that estrogens not only stimulate lactotrope proliferation but also sensitize anterior pituitary cells to proapoptotic stimuli. In addition to their classical mechanism of action through binding to intracellular estrogen receptors (ERs), there is increasing evidence that estrogens exert rapid actions mediated by cell membrane-localized ERs (mERs). In the present study, we examined the involvement of membrane-initiated steroid signaling in the proapoptotic action of estradiol in primary cultures of anterior pituitary cells from ovariectomized rats by using estren, a synthetic estrogen with no effect on classical transcription and a cell-impermeable 17beta-estradiol conjugate (E2-BSA). Both compounds induced cell death of anterior pituitary cells after 60 min of incubation as assessed by flow cytometry and the [3-(4,5-dimethylthiazol-2-yl)]-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Estren, E2, and E2-BSA induced apoptosis of lactotropes and somatotropes as evaluated by the deoxynucleotidyltransferase-mediated dUTP nick end-labeling assay and immunodetection of prolactin (PRL) and growth hormone (GH). The proapoptotic effect of E2-BSA was abrogated by ICI-182,780, an antagonist of ERs. The expression of membrane-associated ERalpha was observed in PRL- and GH-bearing cells. Our results indicate that estradiol is able to exert a rapid apoptotic action in anterior pituitary cells, especially lactotropes and somatotropes, by a mechanism triggered by mERs. This mechanism could be involved in anterior pituitary cell turnover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.