Circulating Tumour Cells (CTCs) are promising cancer biomarkers. Several methods have been developed to isolate CTCs from blood samples. However, the isolation of melanoma CTCs is very challenging as a result of their extraordinary heterogeneity, which has hindered their biological and clinical study. Thus, methods that isolate CTCs based on their physical properties, rather than surface marker expression, such as microfluidic devices, are greatly needed in melanoma. Here, we assessed the ability of the slanted spiral microfluidic device to isolate melanoma CTCs via label-free enrichment. We demonstrated that this device yields recovery rates of spiked melanoma cells of over 80% and 55%, after one or two rounds of enrichment, respectively. Concurrently, a two to three log reduction of white blood cells was achieved with one or two rounds of enrichment, respectively. We characterised the isolated CTCs using multimarker flow cytometry, immunocytochemistry and gene expression. The results demonstrated that CTCs from metastatic melanoma patients were highly heterogeneous and commonly expressed stem-like markers such as PAX3 and ABCB5. The implementation of the slanted microfluidic device for melanoma CTC isolation enables further understanding of the biology of melanoma metastasis for biomarker development and to inform future treatment approaches.
a b s t r a c tThe implementation of novel therapeutic interventions has improved the survival rates of melanoma patients with metastatic disease. Nonetheless, only 33% of treated cases exhibit long term responses. Circulating tumor cell (CTC) measurements are currently of clinical value in breast, prostate and colorectal cancers. However, the clinical utility of melanoma CTCs (MelCTCs) is still unclear due to challenges that appear intrinsic to MelCTCs (i.e. rarity, heterogeneity) and a lack of standardization in their isolation, across research laboratories. Here, we review the latest developments, pinpoint the challenges in MelCTC isolation and address their potential role in melanoma management.
Purpose: We evaluated the predictive value of pretreatment ctDNA to inform therapeutic outcomes in patients with metastatic melanoma relative to type and line of treatment. Experimental Design: Plasma circulating tumor DNA (ctDNA) was quantified in 125 samples collected from 110 patients prior to commencing treatment with immune checkpoint inhibitors (ICIs), as first-(n ¼ 32) or second-line (n ¼ 27) regimens, or prior to commencing first-line BRAF/MEK inhibitor therapy (n ¼ 66). An external validation cohort included 128 patients commencing ICI therapies in the first-(N ¼ 77) or second-line (N ¼ 51) settings. Results: In the discovery cohort, low ctDNA (≤20 copies/mL) prior to commencing therapy predicted longer progression-free survival (PFS) in patients treated with first-line ICIs [HR, 0.20; 95% confidence interval (CI) 0.07-0.53; P < 0.0001], but not in the second-line setting. An independent cohort validated that ctDNA is predictive of PFS in the first-line setting (HR, 0.42; 95% CI, 0.22-0.83; P ¼ 0.006), but not in the second-line ICI setting. Moreover, ctDNA prior to commencing ICI treatment was not predictive of PFS for patients pretreated with BRAF/MEK inhibitors in either the discovery or validation cohorts. Reduced PFS and overall survival were observed in patients with high ctDNA receiving anti-PD-1 monotherapy, relative to those treated with combination anti-CTLA-4/anti-PD-1 inhibitors. Conclusions: Pretreatment ctDNA is a reliable indicator of patient outcome in the first-line ICI treatment setting, but not in the second-line ICI setting, especially in patients pretreated with BRAF/MEK inhibitors. Preliminary evidence indicated that treatment-na€ ve patients with high ctDNA may preferentially benefit from combined ICIs.
Background The validity of circulating tumour DNA (ctDNA) as an indicator of disease progression compared to medical imaging in patients with metastatic melanoma requires detailed evaluation. Methods Here, we carried out a retrospective ctDNA analysis of 108 plasma samples collected at the time of disease progression. We also analysed a validation cohort of 66 metastatic melanoma patients monitored prospectively after response to systemic therapy. Results ctDNA was detected in 62% of patients at the time of disease progression. For 67 patients that responded to treatment, the mean ctDNA level at progressive disease was significantly higher than at the time of response (P < 0.0001). However, only 30 of these 67 (45%) patients had a statistically significant increase in ctDNA by Poisson test. A validation cohort of 66 metastatic melanoma patients monitored prospectively indicated a 56% detection rate of ctDNA at progression, with only two cases showing increased ctDNA prior to radiological progression. Finally, a correlation between ctDNA levels and metabolic tumour burden was only observed in treatment naïve patients but not at the time of progression in a subgroup of patients failing BRAF inhibition (N = 15). Conclusions These results highlight the low efficacy of ctDNA to detect disease progression in melanoma when compared mainly to standard positron emission tomography imaging.
In this study, we evaluated the predictive value of circulating tumour DNA (ctDNA) to inform therapeutic outcomes in metastatic melanoma patients receiving systemic therapies. We analysed 142 plasma samples from metastatic melanoma patients prior to commencement of systemic therapy: 70 were treated with BRAF/MEK inhibitors and 72 with immunotherapies. Patient-specific droplet digital polymerase chain reaction assays were designed for ctDNA detection. Plasma ctDNA was detected in 56% of patients prior to first-line anti-PD1 and/or anti-CTLA-4 treatment. The detection rate in the immunotherapy cohort was comparably lower than those with BRAF inhibitors (76%, p = 0.0149). Decreasing ctDNA levels within 12 weeks of treatment was strongly concordant with treatment response (Cohen’s k = 0.798, p < 0.001) and predictive of longer progression free survival. Notably, a slower kinetic of ctDNA decline was observed in patients treated with immunotherapy compared to those on BRAF/MEK inhibitors. Whole exome sequencing of ctDNA was also conducted in 9 patients commencing anti-PD-1 therapy to derive tumour mutational burden (TMB) and neoepitope load measurements. The results showed a trend of high TMB and neoepitope load in responders compared to non-responders. Overall, our data suggest that changes in ctDNA can serve as an early indicator of outcomes in metastatic melanoma patients treated with systemic therapies and therefore may serve as a tool to guide treatment decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.