The objective of this research was to evaluate the passivity by measuring the passive fit and strain development of frameworks screwed on abutments, made by CAD/CAM technology, and to compare these parts with samples manufactured by conventional casting. Using CAD/CAM technology, four samples were made from zirconia (Zircad) and four samples were manufactured from cobalt-chrome (CoCrcad). The control groups were four specimens of cobalt-chrome, made by one-piece casting (CoCrci), with a total of 12 frameworks. To evaluate the passive fit, the vertical misfit at the abutment-framework interface was measured with scanning electron microscopy (250×) when only one screw was tightened. The mean strain in these frameworks was analyzed by photoelasticity test. A significant difference in the passive fit was observed between the control and sample groups. CoCrcad exhibited the best value of passive fit (48.76±13.45 µm) and CoCrci the worst (187.55±103.63 µm); Zircad presented an intermediate value (103.81±43.15 µm). When compared to the other groups, CoCrci showed the highest average stress around the implants (17.19±7.22 kPa). It was concluded that CAD/CAM-fabricated frameworks exhibited better passivity compared with conventionally fabricated frameworks. CAD/CAM-fabricated Co-Cr frameworks may exhibit better passive fit compared with CAD/CAM-fabricated zirconia frameworks. Even so, similar levels of stress were achieved for CAD/CAM-fabricated frameworks.
Yttria-stabilized polycrystalline zirconia ceramics have greatly advanced over the past few years. High-translucent zirconia is a newly introduced ceramic that affords high strength and esthetics and that has significantly increased the clinical indications of monolithic zirconia restorations. Thus, the purpose of this case report was to evaluate the performance of ultrathin monolithic zirconia veneers adhesively luted to enamel surfaces after minimally invasive preparations; in addition, we aimed at presenting a clinical protocol for zirconia surface treatment in order to promote bonding effectiveness to resin cement. This type of restoration presented very acceptable esthetic results and decreased the risk of fracturing the veneer during try-in and clinical use. The results were still satisfactory after one-year follow-up. However, randomized, prospective, controlled clinical trials are required to determine the long-term clinical durability of this treatment.
<p>The aim of this study was to systematically review the literature to assess static fracture strength tests applied for FDPs and analyze the impact of periodontal ligament (PDL) simulation on the fracture strength. Original scientific papers published in MEDLINE (PubMed) database between 01/01/1981 and 01/06/2010 were included in this systematic review. Data were analyzed considering the test method (static loading), material type (metal-ceramic-MC, oxide all-ceramic-AC, fiber reinforced composite resin-FRC, composite resin-C), PDL (without or with) and restoration type (single crowns, 3-unit, 4-unit, inlay-retained and cantilever FDPs). The selection process resulted in the 72 studies. In total, 377 subgroups revealed results from static load-bearing capacity of different materials. Fourteen metal-ceramic, 190 AC, 121 FRC, 45 C resin groups were identified as subgroups. Slightly decreased results were observed with the presence of PDL for single crowns (without PDL=1117±215 N; with PDL=876±69 N), 3-unit FDPs (without PDL=791±116 N; with PDL=675±91 N) made of AC, 3-unit FDP (without PDL=1244±270 N; with PDL=930±76 N) and inlay-retained FDP (without PDL=848±104 N; with PDL=820±91 N) made of FRC and 4-unit FDPs (without PDL=548±26 N; with PDL=393±67 N) made of C. Overall, for single crowns, fracture strength of FRC was higher than that of AC and MC; for 3-unit FDPs FRC=C>AC=MC; for 4-unit FDPs AC>FRC>C and for inlay-retained FDPs, FRC=AC. An inclination for decreased static fracture strength could be observed with the simulation of PDL but due to insufficient data this could not be generalized for all materials used for FDPs.</p>
This paper aims to evaluate the effect of different surface treatments on surface topography, wettability, and shear bond strength of resin cement to glass ceramic. Methodology: For SBS test, 32 blocks (7x7x2 mm) of lithium disilicate were obtained and randomly divided into eight groups (four blocks per group) according to each surface treatment (HF 20 s, 60 s, 120 s + silanization/S or Scotch Bond Universal/ SBU) and the Monobond Etch & Prime-MEP application followed or not by SBU. On each treated surface ceramic block, up to four dual-curing resin cement cylinders were prepared and light-cured for 40s (N=120/n=15). The specimens were thermocycled (10,000 cycles, 5-55°C, 30 s) and the SBS test (50KgF, 0.5 mm/min) was performed. Furthermore, failure analysis, wettability, AFM, and SEM were carried out. SBS data (MPa) were analyzed using Student's t-test, two-way ANOVA, Tukey's test (5%) and Weibull's analysis. Results: For HF experimental groups, two-way ANOVA presented the factors "etching time" and "bonding agent" as significant (p<0.05). After silane application, the HF groups presented similar bond strength. SBU application compromised the SBS, except for 120s etching time (HF120sS: 23.39 a ±6.48 MPa; HF120sSBU: 18.76 a ±8.81MPa). For MEP groups, SBU application did not significantly affect the results (p=0.41). The MEP group presented the highest Weibull modulus (4.08 A) and they were statistically different exclusively from the HF20sSBU (0.58 B). Conclusion: The HF 20s, 60s, 120 s followed by silane, promoted similar resin-bond strength to ceramic and the SBU application after HF or MEP did not increase the SBS.
Clinical Relevance The Monobond Etch & Prime seems to be an efficient option for adhesive cementation of ultrathin veneers and full crown ceramic with good properties after two years of clinical follow-up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.