Porphyrias are a group of metabolic diseases that arise from deficiencies in the heme biosynthetic pathway. A partial deficiency in hydroxymethylbilane synthase (HMBS) produces a hepatic disorder named Acute Intermittent Porphyria (AIP); the acute porphyria is more frequent in Argentina. In this paper we review the results obtained for 101 Argentinean AIP families and 6 AIP families from foreign neighbour countries studied at molecular level at Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP). Thirty-five different mutations were found, of which 14 were described for the first time in our population. The most prevalent type of mutations was the missense mutations (43%) followed by splice defects (26%) and small deletions (20%). An odd case of a double heterozygous presentation of AIP in a foreign family from Paraguay is discussed. Moreover, it can be noted that 38 new families were found carrying the most frequent mutation in Argentina (p.G111R), increasing to 55.66% the prevalence of this genetic change in our population and adding further support to our previous hypothesis of a founder effect for this mutation in Argentina. Identification of patients with an overt AIP is important because treatment depends on an accurate diagnosis, but more critical is the identification of asymptomatic relatives to avoid acute attacks which may progress to death.
Shewanella spp. are Gram-negative rods widely disseminated in aquatic niches that can also be found in human-associated environments. In recent years, reports of infections caused by these bacteria have increased significantly. Mobilome and resistome analysis of a few species showed that they are versatile; however, comprehensive comparative studies in the genus are lacking. Here, we analyzed the genetic traits of 144 genomes from Shewanella spp. isolates focusing on the mobilome, resistome, and virulome to establish their evolutionary relationship and detect unique features based on their genome content and habitat. Shewanella spp. showed a great diversity of mobile genetic elements (MGEs), most of them associated with monophyletic lineages of clinical isolates. Furthermore, 79/144 genomes encoded at least one antimicrobial resistant gene with their highest occurrence in clinical-related lineages. CRISPR-Cas systems, which confer immunity against MGEs, were found in 41 genomes being I-E and I-F the more frequent ones. Virulome analysis showed that all Shewanella spp. encoded different virulence genes (motility, quorum sensing, biofilm, adherence, etc.) that may confer adaptive advantages for survival against hosts. Our data revealed that key accessory genes are frequently found in two major clinical-related groups, which encompass the opportunistic pathogens Shewanella algae and Shewanella xiamenensis together with several other species. This work highlights the evolutionary nature of Shewanella spp. genomes, capable of acquiring different key genetic traits that contribute to their adaptation to different niches and facilitate the emergence of more resistant and virulent isolates that impact directly on human and animal health.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.