Fyn kinase is a key contributor in coupling FcεRI to mast cell degranulation. A limited macroarray analysis of FcεRI-induced gene expression suggested potential defects in lipid metabolism, eicosanoid and glutathione metabolism, and cytokine production. Biochemical analysis of these responses revealed that Fyn-deficient mast cells failed to secrete the inflammatory eicosanoid products leukotrienes B4 and C4, the cytokines IL-6 and TNF, and chemokines CCL2 (MCP-1) and CCL4 (MIP-1β). FcεRI-induced generation of arachidonic acid and normal induction of cytokine mRNA were defective. Defects in JNK and p38 MAPK activation were observed, whereas ERK1/2 and cytosolic phospholipase A2 (S505) phosphorylation was normal. Pharmacological studies revealed that JNK activity was associated with generation of arachidonic acid. FcεRI-mediated activation of IκB kinase β and IκBα phosphorylation and degradation was defective resulting in a marked decrease of the nuclear NF-κB DNA binding activity that drives IL-6 and TNF production in mast cells. However, not all cytokine were affected, as IL-13 production and secretion was enhanced. These studies reveal a major positive role for Fyn kinase in multiple mast cell inflammatory responses and demonstrate a selective negative regulatory role for certain cytokines.
The covariant formulation of Maxwell's equations can be expressed in a form independent of the usual systems of units by introducing the constants α, β and γ into these equations. Maxwell's equations involving these constants are then specialized to the most commonly used systems of units: Gaussian, SI and Heaviside-Lorentz by giving the constants α, β and γ the values appropriate to each system.
We present an experimental setup based on the normal modes of vibrating soap
films which shows quantum features of integrable and chaotic billiards. In
particular, we obtain the so-called scars -narrow linear regions with high
probability along classical periodic orbits- for the classically chaotic
billiards. We show that these scars are also visible at low frequencies.
Finally, we suggest some applications of our experimental setup in other
related two-dimensional wave phenomena.Comment: 5 pages, 7 figures. Better Postscript figures available on reques
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.