Black rot of cruciferous plants, caused by Xanthomonas campestris pv. campestris, causes severe losses in agriculture around the world. This disease affects several cultures, including cabbage and broccoli, among others. Proteome studies of this bacterium have been reported; however, most of them were performed using the bacterium grown under culture media conditions. Recently, we have analyzed the proteome of X. campestris pv. campestris during the interaction with the susceptible cultivar of Brassica oleracea and several proteins were identified. The objective of the present study was to analyze the expressed proteins of X. campestris pv. campestris during the interaction with the resistant cultivar of B. oleracea. The bacterium was infiltrated in the leaves of the resistant plant and recovered for protein extraction and two-dimensional electrophoresis. The protein profile was compared with that of the bacterium isolated from the susceptible host and the results obtained revealed a group of proteins exclusive to the resistant interaction. Among the proteins identified in this study were plant and bacterium proteins, some of which were exclusively expressed during the resistant interaction.
Exercise is recognized to prevent and attenuate several metabolic and cardiovascular disorders. Obesity is commonly related to cardiovascular diseases, frequently resulting in heart failure and death. To elucidate the effects of acute exercise in heart tissue from obese animals, 12-week-old C57BL6/J obese (ob/ob) and non-obese (ob/OB) mice were submitted to a single bout of swimming and had their hearts analyzed by proteomic techniques. Mice were divided into three groups: control (ob/ob, n = 3; ob/OB, n = 3); a moderate intensity consisting of 20 min of swimming around 90% of Maximal Lactate Steady State (ob/ob, n = 3; ob/OB, n = 3), and a high intensity exercise performed as an incremental overload test (ob/ob, n = 3; ob/OB, n = 3). Obesity modulations were analyzed by comparing ob/ob and ob/OB control groups. Differential 2-DE analysis revealed that single session of exercise was able to up-regulate: myoglobin (ob/ob), aspartate aminotransferase (ob/OB) and zinc finger protein (ob/OB) and down-regulate: nucleoside diphosphate kinase B (ob/OB), mitochondrial aconitase (ob/ob and ob/OB) and fatty acid binding protein (ob/ob). Zinc finger protein and α-actin were up-regulated by the effect of obesity on heart proteome. These data demonstrate the immediate response of metabolic and stress-related proteins after exercise so as contractile protein by obesity modulation on heart proteome.
Rice is the most important crop consumed all over the world. In Brazil, irrigated rice covers 50 % of the rice producing area and is responsible for 75 % of the national production. Upland rice covers most of the remaining area, and is therefore, a very important production system in the country. In the present study, we have used the drought tolerant upland rice variety Três Meses Antigo to investigate the proteomic changes that occur during drought stress. Plants were submitted to drought by the reposition of 50 % of the water lost daily. Twenty days after the beginning of the drought stress period, leaves were harvested and used for protein extraction. The 2D maps obtained from treated and control plants revealed 408 reproducible spots, 44 of which were identified by mass spectrometry, including 15 differential proteins. Several unaltered proteins were also identified (39 spots) and were mainly involved in photosynthesis. Taken together, the results obtained suggest that the tolerant upland rice up-regulates anti-oxidant and energy production related proteins in order to cope with water deficit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.