Across evolution, the signal recognition particle pathway targets extra‐cytoplasmic proteins to membranous translocation sites. Whereas the pathway has been extensively studied in Eukarya and Bacteria, little is known of this system in Archaea. In the following, membrane association of FtsY, the prokaryal signal recognition particle receptor, and SRP54, a central component of the signal recognition particle, was addressed in the halophilic archaea Haloferax volcanii. Purified H. volcanii FtsY, the FtsY C‐terminal GTP‐binding domain (NG domain) or SRP54, were combined separately or in different combinations with H. volcanii inverted membrane vesicles and examined by gradient floatation to differentiate between soluble and membrane‐bound protein. Such studies revealed that both FtsY and the FtsY NG domain bound to H. volcanii vesicles in a manner unaffected by proteolytic pretreatment of the membranes, implying that in Archaea, FtsY association is mediated through the membrane lipids. Indeed, membrane association of FtsY was also detected in intact H. volcanii cells. The contribution of the NG domain to FtsY binding in halophilic archaea may be considerable, given the low number of basic charges found at the start of the N‐terminal acidic domain of haloarchaeal FtsY proteins (the region of the protein thought to mediate FtsY–membrane association in Bacteria). Moreover, FtsY, but not the NG domain, was shown to mediate membrane association of H. volcanii SRP54, a protein that did not otherwise interact with the membrane.
By exploiting the salt-insensitive interaction of the cellulose-binding domain (CBD) of the Clostridium thermocellum cellulosome with cellulose, purification of CBD-fused versions of SecY and SecE, components of the translocation apparatus of the halophilic archaeon Haloferax volcanii, was undertaken. Following transformation of Haloferax volcanii cells with CBD-SecY- or -SecE-encoding plasmids, cellulose-based purification led to the capture of stably expressed, membrane-bound 68 and 25 kDa proteins, respectively. Both fusion proteins were recognized by antibodies raised against the CBD. Thus, CBD-cellulose interactions can be employed as a salt-insensitive affinity purification system for the capture of complexes containing the Haloferax volcanii translocation apparatus components SecY and SecE.
Abstract. Membrane-related processes in archaea, the third and most-recently described domain of life, are in general only poorly understood. One obstacle to a functional understanding of archaeal membrane-associated activities corresponds to a lack of archaeal model membrane systems. In the following, characterization of inverted archaeal membrane vesicles, prepared from the halophilic archaeon Haloferax volcanii, is presented. The inverted topology of the vesicles was revealed by defining the orientation of membrane-bound enzymes that in intact cells normally face the cytoplasm or of other protein markers, known to face the exterior medium in intact cells. Electron microscopy, protease protection assays and lectin-binding experiments confirmed the sealed nature of the vesicles. Upon alkalinization of the external medium, the vesicles were able to generate ATP, reflecting the functional nature of the membrane preparation. The availability of preparative scale amounts of inverted archaeal membrane vesicles provides a platform for the study of various membranerelated phenomena in archaea.
In all three domains of life, extracytoplasmic proteins must overcome the hurdle presented by hydrophobic, lipid-based membranes. While numerous aspects of the protein translocation process have been well studied in bacteria and eukarya, little is known about how proteins cross the membranes of archaea. Analysis to date suggests that archael protein translocation is a mosaic of bacterial, eukaryal, and archaeal features, as indeed is much of archaeal biology. Archaea encode homologues of selected elements of the bacterial and eukaryal translocation machines, yet lack other important components of these two systems. Other aspects of the archaeal translocation process appear specific to this domain, possibly related to the extreme environmental conditions in which archsea thrive. In the following, current understanding of archaeal protein translocation is reviewed, as is recent progress in reconstitution of the archaeal translocation process in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.