We report a study of the structural and electrical properties of a carboxylic acid derivative (CAD) with structural formula C 5 H 8 O 2 ((E)-pent-2-enoic acid). Using the Møller-Plesset Perturbation Theory (MP2) and the Density Functional Theory (DFT/CAM-B3LYP) with the 6-311++G(d,p) basis set the dipole moment, the linear polarizability and the first and second hyperpolarizabilities are calculated in presence of static and dynamic electric field. Through the supermolecule approach the crystalline phase of the carboxylic acid derivative is simulated and the environment polarization effects on the electrical parameters are studied. Static and dynamic estimation of the linear refractive index and the third-order nonlinear susceptibility of the crystal are obtained and compared with available experimental results. The characteristic vibrational modes and functional groups present in CAD were analyzed by Fourier Transform Infrared Spectrum (FT-IR) in the region of 400-4000 cm-1. Through the Hirshfeld surface analysis the molecular structure and the vibrational modes properties of the CAD crystal are explored. The effects of solvent medium on the molecular properties are taken into account through the Polarizable Continuum Model (PCM). Also, the frontiers molecular orbitals, the band gap energy, and the global chemical reactivity descriptors are discussed. All the properties studied suggest that the present material may be considered for nonlinear optical material.
In this work we present a brief history of Optics, begun several centuries BC in its evolution characterized as Classical Optics; later on, this theory became also characterized as Quantum Optics. The first of these two theories was completed in the great work of J. C. Maxwell while the second actually started in 1977 with the discovery of the first quantum effect in Optics, having in Roy Glauber one of its greatest representatives. Here, a quick walk along these two theories was made, including the various technological applications of both in science and society
The present work investigates the entropy and the excitation inversion of a coupled system that consists of a qubit represented by a Cooper pair box (CPB) interacting with a transmission line working as a circuit quantum electrodynamics (CQED). The proposed scheme uses the Buck-Sukumar model with a time dependent frequency in the presence of losses to study the evolution of the entropy and the excitation inversion of the system. We have shown that the CQED is much more sensitive to the presence of losses than the CPB. The results also show that it is possible to monitor properties of the subsystems through appropriate choices of the time-dependent parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.