To reduce the burden of pneumococcal diseases, different formulations of pneumococcal conjugate vaccines (PCV) have been introduced in many countries. In Brazil, PCV10 has been available since 2010. We aimed to analyze the serotype and genetic composition of invasive pneumococci from Brazil in pre- and post- vaccination periods (2007–2012). Antibiotic susceptibility was determined and genotypes of macrolide and fluoroquinolone resistance were characterized. The genotypes of isolates of the most frequent serotypes were determined by multilocus sequence typing. The study included 325 isolates, which were primarily recovered from blood. The most common serotypes recovered were 14, 3, 4, 23F, 7F, 9V, 12F, 20, 19F, 8, 19A, and 5. Thirty-eight pneumococci (11.7%) were from children ≤5 years old. Considering the overall population, PCV10 and PCV13 serotype coverage was 50.1% and 64.9%, respectively. During the pre-vaccine period, isolates with serotypes belonging to the PVC10 represented 51.5% (100/194), whereas in the post vaccine they represented 48.0% (63/131). PCV13 serotypes represented 67.5% (131/194) and 59.2% (77/131) of total for pre- and post-vaccination periods, respectively. Seventy different sequence types [STs] were found, accounting for 9 clonal complexes [CCs] and 45 singletons. Eight STs (156, 180, 218, 8889, 53, 191, 770, and 4967) represented the majority (51.5%) of isolates. Fifty STs were associated with the pre-vaccination period (27 exclusive) and 43 (20 exclusive) with the post-vaccination period; 23 STs were identified in both periods. Some serotypes were particularly clonal (7F, 8, 12F, 20). Non-susceptibility to penicillin was associated with serotype 19A, CC320. Erythromycin resistance was heterogeneous when considering serotype and ST. A single serotype 23F (ST4967) isolate was resistant to levofloxacin. Continued surveillance is required to determine vaccine impact and to monitor changes in pneumococcal population biology post-PCV10 introduction in Brazil.
Introduction: Hospitals around the world have presented multiresistant Acinetobacter sp. outbreaks. The spread of these isolates that harbor an increasing variety of resistance genes makes the treatment of these infections and their control within the hospital environment more difficult. This study aimed to evaluate the occurrence and dissemination of Acinetobacter sp. multiresistant isolates and to identify acquired resistance genes. Methods: We analyzed 274 clinical isolates of Acinetobacter sp. from five hospitals in Porto Alegre, RS, Brazil. We evaluated the susceptibility to antimicrobial, acquired resistance genes from Ambler's classes B and D, and performed molecular typing of the isolates using enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) technique. Results: A high (68%) percentage of multiresistant isolates of Acinetobacter sp. was observed, and 69% were resistant to carbapenems. We identified 84% of isolates belonging to species A. baumannii because they presented the gene bla . The gene bla was detected in 62% of the isolates, and among these, 98% were resistant to carbapenems. Using the ERIC-PCR technique, we identified clones of Acinetobacter sp. spread among the four hospitals analyzed during the sampling period. Conclusions: The data indicate the dissemination of Acinetobacter sp. isolates among hospitals and their permanence in the hospital after one year.
Use of pneumococcal conjugate vaccines has caused emergence of non-vaccine serotypes. No Brazilian data specifically about serotype 19A are available. We aimed to evaluate the frequency of occurrence, susceptibility profile and molecular epidemiology of serotype 19A before and after vaccine introduction in Brazil. Pneumococcal identification was performed by the conventional method. Strain serotype was determined by multiplex polymerase chain reaction (PCR) and/or Quellung reaction. Resistance was determined by Etest® and PCR was performed to determine the presence of macrolide resistance genes, ermB and/or mefA. Pneumococci were typed by Multilocus Sequence Typing. Thirty-eight serotype 19A Streptococcus pneumoniae were recovered, mostly from invasive diseases. Prevalence of serotype 19A increased following vaccination (from 3.5% before vaccination to 8.1% after, p = 0.04196). Non-susceptibility increased to most antimicrobials after vaccine introduction and was associated with clonal complex (CC)320. MLST showed nine different STs, which were grouped in one main CC: CC320 (63.9%). During the post-vaccination era, the frequency of this serotype increased significantly from 1.2% in 2011 to 18.5% in 2014 (p = 0.00001), with a concomitant decrease in the genetic variability: ST320 consistently predominated after vaccine-introduction (61.1%). Overall, our results showed a post-PCV10 increase in the frequency of serotype 19A. This was accompanied by a selection of CC320 and antimicrobial resistance.
Enterococci are commensals that proliferated as animals crawled ashore hundreds of millions of years ago. They are also leading causes of multidrug-resistant hospital infection. While most studies are driven by clinical interest, comparatively little is known about enterococci in the wild, or the effect of human activity on them. Pharmaceutical pollution and runoff from other human activities are encroaching widely into natural habitats. To assess its reach into remote habitats, we investigated the identity, genetic relatedness, and presence of specific traits among 172 enterococcal isolates from wild Magellanic Penguins. Four enterococcal species, eighteen lineages groups, and different colonization patterns were identified. One E. faecalis lineage, ST475, was isolated from three different penguins, making it of special interest. Its genome was compared to those of other E. faecalis sequence types (ST116 and ST242) recovered from Magellanic Penguins, as well as to an existing phylogeny of E. faecalis isolated from diverse origins over the past 100 years. No penguin-derived E. faecalis strains were closely related to dominant clinical lineages. Most possessed intact CRISPR defenses, few mobile elements, antibiotic resistances limited to those intrinsic to the species, and lacked pathogenic features conveyed by mobile elements. Interestingly, plasmids were identified in penguin isolates that also had been reported in other marine mammals. Enterococci isolated from penguins showed limited anthropogenic impact, indicating that they are likely representative of those naturally circulating in the ecosystem inhabited by the penguins. These findings establish an important baseline for detecting the encroachment of human activity into remote planetary environments. IMPORTANCE Enterococci are host-associated microbes that have an unusually broad range, from the built hospital environment to the guts of insects and other animals in remote locations. Despite their occurrence in the guts of animals for hundreds of millions of years, we know little about the properties that confer this range, or how anthropogenic activities may be introducing new selective forces. Magellanic Penguins live at the periphery of human habitation. It was of interest to examine enterococci from these animals for the presence of antibiotic resistance and other markers reflective of anthropogenic selection. Diverse enterococcal lineages found discount the existence of a single well-adapted intrinsic penguin-specific species. Instead, they appear to be influenced by a carnivorous lifestyle and enterococci present in the coastal sea life consumed. These results indicate that currently, the penguin habitat remains relatively free of pollutants that select for adaptation to human-derived stressors.
Our population of pneumococci represents a transition era, soon after the introduction of PCV10. Non-susceptible patterns were found to be associated with classical PCV serotypes (especially serotype 14), which is still highly prevalent, and non-PCV10 ones (19A), which may disseminate, occupying the biological niche left by the vaccine serotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.