Your article is protected by copyright and all rights are held exclusively by Springer Basel. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".
The Propositional Logic of Proofs (LP) is a modal logic in which the modality 2A is revisited as [[t]]A, t being an expression that bears witness to the validity of A. It enjoys arithmetical soundness and completeness, can realize all S4 theorems and is capable of reflecting its own proofs ( A implies [[t]]A, for some t). A presentation of first-order LP has recently been proposed, FOLP, which enjoys arithmetical soundness and has an exact provability semantics. A key notion in this presentation is how free variables are dealt with in a formula of the form [[t]]A(i). We revisit this notion in the setting of a Natural Deduction presentation and propose a Curry-Howard correspondence for FOLP. A term assignment is provided and a proof of strong normalisation is given.1. Uncover the modal logic of the formal provability predicate 鈭儀.Proof (x, A ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.