The antibiotic streptazolin (1), its E-isomer (2), along with the stereoisomers strepchazolin A (3) and strepchazolin B (4) and the inorganic compound cyclooctasulfur (5) were produced in solid culture by Streptomyces chartreusis ICBG377, which was isolated from the fungal garden of the leaf-cutter ant Acromyrmex subterraneus brunneus. This is the first time compound 2 is reported as a natural product. Compound 5, which showed antagonist activity against the specialized pathogenic fungus Escovopsis sp., was also produced by Streptomyces chartreusis ICBG323, isolated from the exoskeleton of winged male of Mycocepurus goeldii. The absolute configurations of 3 and 4 were confirmed by the combination of vibrational circular dichroism (VCD) spectroscopy and density functional theory (DFT) calculations. These results clearly demostrate the power of VCD to tell apart epimeric natural products. Compounds 1, 3 and 4 were produced by geographically distant but phylogenetically close strains, S. chartreusis ICBG 377 isolated in Brazil, and S. chartreusis NA02069, a marine sediment strain isolated in China.
Symbiotic interactions between microorganisms and social insects have been described as crucial for the maintenance of these multitrophic systems, as observed for the stingless beeScaptotrigona depilisand the yeastZygosaccharomycessp. The larvae ofS. depilisingest fungal filaments ofZygosaccharomycessp. to obtain ergosterol, which is the precursor for the biosynthesis of ecdysteroids that modulate insect metamorphosis. In this work we verified that nutritional fungal symbioses also occur in other species of stingless bees. We analyzed brood cell samples from 19 species of stingless bees collected in Brazil. The osmophilic yeast Zygosaccharomyces spp. was isolated from eight bee species, namelyScaptotrigona bipuctata,S. postica,S. tubiba,Tetragona clavipes,Melipona quadrifasciata,M. fasciculata,M. bicolorandPartamona helleri. These yeasts form pseudohyphae and also accumulate ergosterol in lipid droplets, similar to the pattern observed forS. depilis. The phylogenetic analyses including variousZygosaccharomycesrevealed that strains isolated from the brood cells formed a branch separated from the previously describedZygosaccharomycesspecies, suggesting that they are new species of this genus and reinforcing the symbiotic interaction with the host insects.
Symbiotic interactions between microorganisms and social insects have been described as crucial for the maintenance of these multitrophic systems, as observed for the stingless bee Scaptotrigona depilis and the yeast Zygosaccharomyces sp. SDBC30G1. The larvae of S. depilis ingest fungal filaments of Zygosaccharomyces sp. SDBC30G1 to obtain ergosterol, which is the precursor for the biosynthesis of ecdysteroids that modulate insect metamorphosis. In this work, we find a similar insect-microbe interaction in other species of stingless bees. We analyzed brood cell samples from 19 species of stingless bees collected in Brazil. The osmophilic yeast Zygosaccharomyces spp. was isolated from eight bee species, namely Scaptotrigona bipunctata, S. postica, S. tubiba, Tetragona clavipes, Melipona quadrifasciata, M. fasciculata, M. bicolor, and Partamona helleri. These yeasts form pseudohyphae and also accumulate ergosterol in lipid droplets, similar to the pattern observed for S. depilis. The phylogenetic analyses including various Zygosaccharomyces revealed that strains isolated from the brood cells formed a branch separated from the previously described Zygosaccharomyces species, suggesting that they are new species of this genus and reinforcing the symbiotic interaction with the host insects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.