Many populations use medicinal plants as a therapeutic treatment, due to their lower cost and greater access. Among the plant species used for medicinal purposes are those of the genus Morus. The most known species are Morus alba, rubra, and nigra. This review aims to collect data from the literature, predominantly from cell and animal studies, which presents a possible nutraceutical and medicinal potential of the species Morus for use in metabolic dysfunctions. The fruits and leaves of mulberry are used for therapeutic purposes. For scientific confirmation of these effects, they were studied for laxative properties, antibacterial activity, anti-atherogenic activity, and hepatoprotective function. Furthermore, the genus Morus is recognized for the treatment and prevention of diabetes mellitus, through its hypoglycemic action. It may also provide health benefits through immunomodulatory, anti-inflammatory, and anti-nociceptive effects. It has been found that the Morus species have phenolic compounds, flavonoids, and anthocyanins that act as important antioxidants and promote beneficial effects on human health. These phytochemical compounds differ among species. Blackberry (Morus nigra) are rich in flavonoids, while the white mulberry (Morus alba) has low concentrations of flavonoids and anthocyanins. In addition, another important factor is to ensure a complete exemption of toxic risks in the use of medicinal plants for the treatment of diseases. Studies have shown no toxic effects by the administration of extracts of Morus species. Thus, the mulberry tree presents nutraceutical potential. It is therefore a promising alternative for medicinal products based on medicinal plants.
The aim of this study was to evaluate the therapeutic effects of two different doses (250 and 500 mg/kg) of Morinda citrifolia fruit aqueous extract (AE) in high-fat/high-fructose-fed Swiss mice. The food intake, body weight, serum biochemical, oral glucose tolerance test (OGTT), and enzyme-linked immunosorbent assay (ELISA), as well as histological analyses of the liver, pancreatic, and epididymal adipose tissue, were used to determine the biochemical and histological parameters. The chemical profile of the extract was determined by ultra-fast liquid chromatography–diode array detector–tandem mass spectrometry (UFLC–DAD–MS), and quantitative real-time PCR (qRT-PCR) was used to evaluate the gene expressions involved in the lipid and glucose metabolism, such as peroxisome proliferative-activated receptors-γ (PPAR-γ), -α (PPAR-α), fatty acid synthase (FAS), glucose-6-phosphatase (G6P), sterol regulatory binding protein-1c (SREBP-1c), carbohydrate-responsive element-binding protein (ChREBP), and fetuin-A. Seventeen compounds were tentatively identified, including iridoids, noniosides, and the flavonoid rutin. The higher dose of AE (AE 500 mg/kg) was demonstrated to improve the glucose tolerance; however, both doses did not have effects on the other metabolic and histological parameters. AE at 500 mg/kg downregulated the PPAR-γ, SREBP-1c, and fetuin-A mRNA in the liver and upregulated the PPAR-α mRNA in white adipose tissue, suggesting that the hypoglycemic effects could be associated with the expression of genes involved in de novo lipogenesis.
The fruit of Caryocar brasiliense Cambess. is a source of oil with active compounds that are protective to the organism. In our work, we analyzed the physicochemical characteristics and evaluated the effects of supplementation with C. brasiliense oil in an animal model. We characterized the oil by indices of quality and identity, optical techniques of absorption spectroscopy in the UV–Vis region and fluorescence, and thermogravimetry/derived thermogravimetry (TG/DTG). For the animal experiment, we utilized mice (Mus musculus) supplemented with lipidic source in different dosages. The results demonstrated that C. brasiliense oil is an alternative source for human consumption and presents excellent oxidative stability. Primarily, it exhibited oleic MFA (53.56%) and palmitic SFA (37.78%). The oil level of tocopherols and tocotrienols was superior to the carotenoids. The supplementation with C. brasiliense oil reduced the levels of total cholesterol, LDL-c, and non-HDL-c. Regarding visceral fats and adiposity index, the treatment synergically supplemented with olive oil and C. brasiliense oil (OO + CO) obtained the best result. Therefore, C. brasiliense oil is a high quality product for consumption. Its supplementation promotes beneficial effects mainly on the lipidic profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.