Low indoor air quality is an increasingly important problem due to the spread of urbanization. Because people spend most of their time inside, poor indoor air quality causes serious human health issues, resulting in significant economic losses. In this work, the current state of affairs is presented and analyzed, focusing on the current problems and the available solutions to improve the quality of indoor air, and the use of nature-based solutions. These involve the cultivation of microalgae in closed photobioreactors. In these systems, photosynthetic organisms can capture CO2 and other pollutants generated in indoor environments, which they use to grow and develop biomass. Several possible layouts for the implementation of microalgae-based indoor air cleaning systems are presented, taking into account the systems that are currently available at a commercial scale. A critical analysis of the microalgae indoor purification systems is presented, highlighting their advantages and disadvantages, and suggesting potential improvements and future lines of research and development in the area.
Aims: Indoor air quality (IAQ) has attracted increased attention with the emergence of COVID-19. Ventilation is perhaps the area in which the most changes have been proposed in response to the emergency caused by this virus. However, other strategies are possible, such as source control and the extraction of pollutants. The latter incorporates clean technologies, an emergent area with respect to IAQ. Method: Various air treatment technologies can be used to control contaminants, which are reviewed and discussed in this work, including physicochemical technologies (e.g., filtration, adsorption, UV-photocatalytic oxidation, ultraviolet disinfection and ionization) and biological technologies (e.g., plant purification methods and microalgae-based methods). Results and interpretation: This work reviews currently available solutions and technologies for “cleaning” indoor air, with a focus on their advantages and disadvantages. One of the most common problems in this area is the emission of pollutants that are sometimes more dangerous to human health than those that the technologies were developed to remove. Another aspect to consider is the limitation of each technology in relation to the type of pollutants that need to be removed. Each of the investigated technologies works well for a family of pollutants with similar characteristics, but it is not applicable to all pollutant types. Thus, the optimal solution may involve the use of a combination of technologies to extend the scope of application, in addition to the development of new materials, for example, through the use of nanotechnology.
Lithium-ion batteries are a key technology for electromobility; thus, quality control in cell production is a central aspect for the success of electric vehicles. The detection of defects and poor insulation behavior of the separator is essential for high-quality batteries. Optical quality control methods in cell production are unable to detect small but still relevant defects in the separator layer, e.g., pinholes or particle contaminations. This gap can be closed by executing high-potential testing to analyze the insulation performance of the electrically insulating separator layer in a pouch cell. Here, we present an experimental study to identify different separator defects on dry cell stacks on the basis of electric voltage stress and mechanical pressure. In addition, finite element modeling (FEM) is used to generate physical insights into the partial discharge by examining the defect structures and the corresponding electric fields, including topographical electrode roughness, impurity particles, and voids in the separator. The test results show that hard discharges are associated with significant separator defects. Based on the study, a voltage of 350 to 450 V and a pressure of 0.3 to 0.6 N/mm2 are identified as optimum ranges for the test methodology, resulting in failure detection rates of up to 85%.
The world population is ageing, in particular in the developed world, with a significant increase in the percentage of people above 60 years old. They represent a segment of the population that is more vulnerable to adverse environmental conditions. Among them, indoor air quality is one of the most relevant, as elders spend comparatively more time indoors than younger generations. Furthermore, the recent COVID-19 pandemic contributed immensely to raising awareness of the importance of breathing air quality for human health and of the fact that indoor air is a vector for airborne infections and poisoning. Hence, this work reviews the state of the art regarding indoor air quality in elderly centers, considering the type of pollutants involved, their emission sources, and their health effects. Moreover, the influence of ventilation on air quality is also addressed. Notwithstanding the potential health problems with the corresponding costs and morbidity effects, only a few studies have considered explicitly indoor air quality and its impacts on elderly health. More studies are, therefore, necessary to objectively identify what are the impacts on the health of elderly people due to the quality of indoor air and how it can be improved, either by reducing the pollutants emission sources or by more adequate ventilation and thermal comfort strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.