Monoubiquitination of core histone 2A (H2A-K119u) has a critical role in gene regulation in hematopoietic differentiation and other developmental processes. To explore the interplay of histone H2A deubiquitinase Myb-like SWIRM and MPN domain containing1 (2A-DUB/Mysm1) with the p53 axis in the sequential differentiation of mature lymphocytes from progenitors, we systematically analyzed hematopoiesis and early T-cell development using Mysm1−/− and p53−/−Mysm1−/− mice. Mysm1−/− thymi were severely hypoplastic with <10% of wild-type cell numbers as a result of a reduction of early thymocyte progenitors in context with defective hematopoietic stem cells, a partial block at the double-negative (DN)1–DN2 transition and increased apoptosis of double-positive thymocytes. Increased rates of apoptosis were also detected in other tissues affected by Mysm1 deficiency, including the developing brain and the skin. By quantitative PCR and chromatin immunoprecipitation analyses, we identified p19ARF, an important regulator of p53 tumor suppressor protein levels, as a potential Mysm1 target gene. In newly generated p53−/−Mysm1−/− double-deficient mice, anomalies of Mysm1−/− mice including reduction of lymphoid-primed multipotent progenitors, reduced thymocyte numbers and viability, and interestingly defective B-cell development, growth retardation, neurological defects, skin atrophy, and tail malformation were almost completely restored as well, substantiating the involvement of the p53 pathway in the alterations caused by Mysm1 deficiency. In conclusion, this investigation uncovers a novel link between H2A deubiquitinase 2A-DUB/Mysm1 and suppression of p53-mediated apoptotic programs during early lymphoid development and other developmental processes.
Mouse mutants with an impaired DNA damage response frequently exhibit a set of remarkably similar defects in the HSPC compartment that are of largely unknown molecular basis. Using Mixed-Lineage-Leukemia-5 (Mll5)-deficient mice as prototypical examples, we have identified a mechanistic pathway linking DNA damage and HSPC malfunction. We show that Mll5 deficiency results in accumulation of DNA damage and reactive oxygen species (ROS) in HSPCs. Reduction of ROS efficiently reverses hematopoietic defects, establishing ROS as a major cause of impaired HSPC function. The Ink4a/Arf locus also contributes to HSPC phenotypes, at least in part via promotion of ROS. Strikingly, toxic ROS levels in Mll5 mice are critically dependent on type 1 interferon (IFN-1) signaling, which triggers mitochondrial accumulation of full-length Bid. Genetic inactivation of Bid diminishes ROS levels and reverses HSPC defects in Mll5 mice. Overall, therefore, our findings highlight an unexpected IFN-1 > Bid > ROS pathway underlying DNA damage-associated HSPC malfunction.
Due to an oversight while reviewing the proofs of this article, we mistakenly approved a misspelling of one of our authors' names (''Karin Scharfetter-Kochanek'' instead of the proper spelling, ''Karin Scharffetter-Kochanek''). The correct spelling now appears in the author list above and with this article online. We apologize for the confusion.
T cell progenitors are known to arise from the foetal liver in embryos and the bone marrow in adults; however different studies have shown that a pool of T cell progenitors may also exist in the periphery. Here, we identified a lymphoid population resembling peripheral T cell progenitors which transiently seed the epidermis during late embryogenesis in both wild-type and T cell-deficient mice. We named these cells ELCs (Epidermal Lymphoid Cells). ELCs expressed Thy1 and CD2, but lacked CD3 and TCRαβ/γδ at their surface, reminiscent of the phenotype of extra- or intra- thymic T cell progenitors. Similarly to Dendritic Epidermal T Cells (DETCs), ELCs were radioresistant and capable of self-renewal. However, despite their progenitor-like phenotype and expression of T cell lineage markers within the population, ELCs did not differentiate into conventional T cells or DETCs in in vitro, ex vivo or in vivo differentiation assays. Finally, we show that ELC expressed NK markers and secreted IFN-γ upon stimulation. Therefore we report the discovery of a unique population of lymphoid cells within the murine epidermis that appears related to NK cells with as-yet-unidentified functions.
Mature B cells co-express IgM and IgD B cell antigen receptors (BCR) on their surface. While IgM BCR expression is already essential at early stages of development, the role of the IgD-class BCR remains unclear as most B cell functions appeared unchanged in IgD-deficient mice. Here, we show that IgD-deficient mice have an accelerated rate of B cell responsiveness as they activate antibody production within 24h after immunization, whereas wildtype (WT) animals required 3 days to activate primary antibody responses. Strikingly, soluble monovalent antigen suppresses IgG antibody production induced by multivalent antigen in WT mice. In contrast, IgD-deficient mice were not able to modulate IgG responses suggesting that IgD controls the activation rate of B cells and subsequent antibody production by sensing and distinguishing antigen-valences. Using an insulin-derived peptide we tested the role of IgD in autoimmunity. We show that primary autoreactive antibody responses are generated in WT and in IgD-deficient mice. However, insulin-specific autoantibodies were detected earlier and caused more severe symptoms of autoimmune diabetes in IgD-deficient mice as compared to WT mice. The rapid control of autoimmune diabetes in WT animals was associated with the generation of high-affinity IgM that protects insulin from autoimmune degradation. In IgD-deficient mice, however, the generation of high-affinity protective IgM is delayed resulting in prolonged autoimmune diabetes. Our data suggest that IgD is required for the transition from primary, highly autoreactive, to secondary antigen-specific antibody responses generated by affinity maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.