Next-generation mobile networks are expected to flaunt highly (if not fully) automated management. Network Intelligence (NI) will be the key enabler for such a vision, empowering myriad of orchestrators and controllers across network domains. In this paper, we elaborate on the DAEMON architectural model, which proposes introducing a NI Orchestration layer for the effective end-to-end coordination of NI instances deployed across the whole mobile network infrastructure. Specifically, we first outline requirements and specifications for NI design that stem from data management, control timescales, and network technology characteristics. Then, we build on such analysis to derive initial principles for the design of the NI Orchestration layer, focusing on (i) proposals for the interaction loop between NI instances and the NI Orchestrator, and (ii) a unified representation of NI algorithms based on an extended MAPE-K model. Our work contributes to the definition of the interfaces and operation of a NI Orchestration layer that foster a native integration of NI in mobile network architectures.
Network Function Virtualization (NFV) framework can increase the flexibility and reduce the cost of network functions deployment and operation, but needs to be tailored when this framework is pushed to the domain of edge computing, which is the typical scenario for a 5G neutral host. In such scenario, edge-heavy NFV systems need to address the pressing requirements that comes into play with regard to infrastructure management and multi-layer orchestration, which are typical in a Multi-access Edge Computing (MEC) framework. The European Telecommunications Standards Institute (ETSI) itself has identified a lot of open issues when trying to merge the orchestration life-cycles of NFV and MEC. In this paper we describe a solution that combines extensions in the orchestration and Virtual Infrastructure Management (VIM) layers, along with concrete solutions to the ETSI-identified open issues for NFV-MEC integration, in order to pave the way towards edge-aware NFV solutions for 5G neutral hosts.
Next-generation mobile networks will largely benefit from advances in softwarization and cloudification of network functions. However, fully exploiting the new potential of flexible network architectures in front of increasingly demanding service volumes and requirements calls for an extremely effective integration of Network Intelligence (NI) solutions into production infrastructures. While current standardization efforts towards embedding NI in beyond-5G and 6G systems are still in their infancy, the DAEMON project is developing technologies for a NI-native generation of mobile networks. In this paper, we present current evolutions proposed by DAEMON in terms of a general model for the representation of NI instances, which facilitates their synergic integration in network environments. We showcase the practical viability and advantages of the proposed approach with two state-of-the-art NI algorithms for vRAN orchestration implemented into an open-source data flow programming framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.