Dynamic wetting of a solid surface is a process that is ubiquitous in Nature, and also of increasing technological importance. The underlying dissipative mechanisms are, however, still unclear. We present here short-time dynamic wetting experiments and numerical simulations, based on a phase field approach, of a droplet on a dry solid surface, where direct comparison of the two allows us to evaluate the different contributions from the numerics. We find that an important part of the dissipation may arise from a friction related to the motion of the contact line itself, and that this may be dominating both inertia and viscous friction in the flow adjacent to the contact line. A contact line friction factor appears in the theoretical formulation that can be distinguished and quantified, also in room temperature where other sources of dissipation are present. Water and glycerin-water mixtures on various surfaces have been investigated where we show the dependency of the friction factor on the nature of the surface, and the viscosity of the liquid.
We investigate dilute suspensions of Taylor-microscale-sized particles in homogeneous isotropic turbulence. In particular, we focus on the effect of particle shape on particle-fluid interaction. We conduct laboratory experiments using a novel experimental technique to simultaneously measure the kinematics of fluid and particle phases. This uses transparent particles having the same refractive index as water, whose motion we track via embedded optical tracers. We compare the turbulent statistics of a single-phase flow to the turbulent statistics of the fluid phase in a particle-laden suspension. Two suspensions are compared, one in which the particles are spheres and the other in which they are prolate ellipsoids with aspect ratio 2. We find that spherical particles at volume fraction φ v = 0.14 % reduce the turbulent kinetic energy (TKE) by 15 % relative to the single-phase flow. At the same volume fraction (and slightly smaller total surface area), ellipsoidal particles have a much smaller effect: they reduce the TKE by 3 % relative to the single-phase flow. Spectral analysis shows the details of TKE reduction and redistribution across spatial scales: spherical particles remove energy from large scales and reinsert it at small scales, while ellipsoids remove relatively less TKE from large scales and reinsert relatively more at small scales. Shape effects are far less evident in the statistics of particle rotation, which are very similar for ellipsoids and spheres. Comparing these with fluid enstrophy statistics, we find that particle rotation is dominated by velocity gradients on scales much larger than the particle characteristic length scales.
This paper reports on near-wall two-component–two-dimensional (2C–2D) particle image velocimetry (PIV) measurements of a turbulent pipe flow at shear Reynolds numbers up to $Re_{\unicode[STIX]{x1D70F}}=40\,000$ acquired in the CICLoPE facility of the University of Bologna. The 111.5 m long pipe of 900 mm diameter offers a well-established turbulent flow with viscous length scales ranging from $85~\unicode[STIX]{x03BC}\text{m}$ at $Re_{\unicode[STIX]{x1D70F}}=5000$ down to $11~\unicode[STIX]{x03BC}\text{m}$ at $Re_{\unicode[STIX]{x1D70F}}=40\,000$. These length scales can be resolved with a high-speed PIV camera at image magnification near unity. Statistically converged velocity profiles were determined using multiple sequences of up to 70 000 PIV recordings acquired at sampling rates of 100 Hz up to 10 kHz. Analysis of the velocity statistics shows a well-resolved inner peak of the streamwise velocity fluctuations that grows with increasing Reynolds number and an outer peak that develops and moves away from the inner peak with increasing Reynolds number.
We present a new design for a stirred tank that is forced by two parallel planar arrays of randomly actuated synthetic jets. This arrangement creates turbulence at high Reynolds number with low mean flow. Most importantly, it exhibits a region of 3D homogeneous isotropic turbulence that is significantly larger than the integral lengthscale. These features are essential for enabling laboratory measurements of turbulent suspensions. We use quantitative imaging to confirm isotropy at large, small, and intermediate scales by examining one-- and two--point statistics at the tank center. We then repeat these same measurements to confirm that the values measured at the tank center are constant over a large homogeneous region. In the direction normal to the symmetry plane, our measurements demonstrate that the homogeneous region extends for at least twice the integral length scale $L=9.5$ cm. In the directions parallel to the symmetry plane, the region is at least four times the integral lengthscale, and the extent in this direction is limited only by the size of the tank. Within the homogeneous isotropic region, we measure a turbulent kinetic energy of $6.07 \times 10^{-4} $m$^2$s$^{-2}$, a dissipation rate of $4.65 \times 10^{-5} $m$^2$s$^{-3}$, and a Taylor--scale Reynolds number of $R_\lambda=334$. The tank's large homogeneous region, combined with its high Reynolds number and its very low mean flow, provides the best approximation of homogeneous isotropic turbulence realized in a laboratory flow to date. These characteristics make the stirred tank an optimal facility for studying the fundamental dynamics of turbulence and turbulent suspensions.Comment: 18 pages, 9 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.