This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.
؊1 for the wildtype peptide, and the minimum concentration for pore formation increased from the 1 nM to the 50 nM range. In contrast, peptides mutated in the flexible hinge region, e.g. [⌬N20/⌬M21]nisin, were completely inactive in the pore formation assay, but were reduced to some extent in their in vivo activity. We found the remaining in vivo activity to result from the unaltered capacity of the mutated peptide to bind to lipid II and thus to inhibit its incorporation into the peptidoglycan network. Therefore, through interaction with the membrane-bound cell wall precursor lipid II, nisin inhibits peptidoglycan synthesis and forms highly specific pores. The combination of two killing mechanisms in one molecule potentiates antibiotic activity and results in nanomolar MIC values, a strategy that may well be worth considering for the construction of novel antibiotics.The antimicrobial peptide nisin is produced by numerous strains of Lactococcus lactis and inhibits a broad range of Gram-positive bacteria (1, 2). It belongs to the lantibiotics, a group of antimicrobial peptides that is characterized by the presence of intramolecular rings formed by the thioether amino acids lanthionine and 3-methyllanthionine (3, 4). Nisin has had a long history as a potent and safe food preservative, although recent insight into the molecular mechanism of its bactericidal activity also make it interesting for biomedical applications (5, 6). Generally, the nisin-type subgroup of lantibiotics comprises elongated cationic peptides that have the capacity to adopt amphiphilic structures. Such peptides are assumed to kill microbes by disturbing the integrity of the energy-transducing membrane. Indeed, early experiments demonstrated that nisin or related lantibiotics induced rapid efflux of ions or cytoplasmic solutes such as amino acids and nucleotides. The concomitant depolarization of the cytoplasmic membrane resulted in an instant termination of all biosynthetic processes (7,8). Structural analysis in the presence of micelles indicated that the hydrophilic groups of the peptide interact with the phospholipid headgroups, and the hydrophobic side chains are immersed in the hydrophobic core of the membrane (9, 10). The wedge model as proposed by Driessen et al. (11) takes into account such structural data and proposes that the peptides insert into the membrane without losing contact with the membrane surface, resulting in the formation of a short-lived pore.Whereas the wedge model may illustrate results obtained with model membranes, a number of effects observed with intact living cells remain unexplained; in particular, the fact that nisin acts on model membranes at micromolar concentrations whereas in vivo minimal inhibitory concentration (MIC) 1 values are in the nanomolar range. The discrepancies were explained by the finding that nisin and epidermin use lipid II, the bactoprenol-bound precursor of the bacterial cell wall as a docking molecule for subsequent pore formation (12). The specificity of the nisin-lipid II interaction a...
Lantibiotics are gene-encoded peptides that contain intramolecular ring structures, introduced through the thioether containing lanthionine and methyllanthionine residues. The overwhelming majority of the lantibiotics shows antibacterial activity. Some lantibiotics, e.g. nisin, are characterized by a dual mode of action. These peptides form a complex with the ultimate cell wall precursor lipid II, thereby inhibiting cell wall biosynthesis. The complexes then aggregate, incorporate further peptides and form a pore in the bacterial membrane. Recent results show that complexing of lipid II is widespread among lantibiotics; however, pore formation depends on the overall length of the peptide and the lipid composition of the test strain membrane. In the two-component system of lacticin 3147, the two functions are performed by the two different peptides. The genetic information for production of lantibiotics is organized in gene clusters which contain a structural gene (lanA) for the lantibiotic prepeptide. The modifications are introduced by one biosynthetic enzyme (LanM) or a combination of a dehydratase (LanB) and a cyclase (LanC). These enzymes have been in the focus of recent bioengineering studies: The structure of NisC has been resolved, the reaction mechanism of LctM was elucidated and the active site residues were characterized by mutagenesis studies. In vitro modification systems have successfully been used to introduce thioether rings into other biologically active peptides. Furthermore, variant lantibiotics with enhanced properties have been engineered and at least one promising new lantibiotic with strong activity against multiresistant pathogens has been described.
A plethora of novel gene-encoded antimicrobial peptides from animals, plants and bacteria has been described during the last decade. Many of the bacterial peptides possess modified building blocks such as thioethers and thiazoles or unsaturated and stereoinverted amino acids, which are unique among ribosomally made peptides. Genetic and biochemical studies of many of these peptides, mostly the so-called lantibiotics, have revealed the degree to which cells are capable of transforming peptides by posttranslational modification. The biosynthesis follows a general scheme: Precursor peptides are first modified and then proteolytically activated; the latter may occur prior to, concomitantly with or after export from the cell. The genes for the biosynthetic machinery are organized in clusters and include information for the antibiotic prepeptide, the modification enzymes and accessory functions such as dedicated proteases and ABC transporters as well as immunity factors and regulatory proteins. These fundamental aspects are discussed along with the biotechnological potential of the peptides and of the biosynthesis enzymes, which could be used for construction of novel, peptide-based biomedical effector molecules.
SummaryIt is generally assumed that type A lantibiotics primarily kill bacteria by permeabilization of the cytoplasmic membrane. As previous studies had demonstrated that nisin interacts with the membrane-bound peptidoglycan precursors lipid I and lipid II, we presumed that this interaction could play a role in the pore formation process of lantibiotics. Using a thin-layer chromatography system, we found that only nisin and epidermin, but not Pep5, can form a complex with
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.